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SOME AVERAGING PROCESS

By J.G. Dhombres

In order to give a theoretical definition for a turbulent fluid motion, it is
cgenerally said that the velocity of a particle or the pressure at a given point in
such a fluid presents “irregular” fluctuations around an average value, both for
the time variable and for the space variable. It appears that averages, and averages
which are not constant functions, are here essential. Obviously, random functions
are well suited to the search for such averages and a great number of inves-
tigations concerning turbulent fluid motions use probability theory, and therefore
mathematical expectations as averaging operators. This means that averages are
computed via many different experiments done at random. Another point of view,

historically the first, was to study averages along a time variable by using an
+T

expression such as -'217: f f(t) dt (and its limit when T increases) or to study averages
-T

along a space variable by using similar integrals. Naturally, the link between
these two investigations is to be found in ergodic theorems. However, following
this latter averaging approach we may look for the axiomatic rules to be satisfied
by what shall be considered as an average for a function. Because much freedom
remains, we may require the linearity of the correspondence between f and its
average Pf. We also may ask for some assumption of continuity for the linear
operator P (rather than any assumption of positivity). There is a need for a
supplementary property since linearity and continuity are far too general to provide
a means of obtaining useful averaging methods. An idea, originated by O. Reynolds
(cf. [1]), is to look for an operator P “commuting” with the differential operator
governing fluld motion, namely the Navier-Stokes equation. Recall that the
vectorial Navier-Stokes equation, valid for a newtonian fluid, can be written as

—

(1) L -=0f—grad p+upd(V)~p div(V V)

where I_;(t, M) 1s the velocity at a point M and at time #, the components of
which are V,,V, and V. '

In Eq. (1), 4V (¢, M) is a vector whose components are 4V, 4V, and 4V, p is
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the pressure, f an external force

and div (T7®T7) is a non linear term, which denotes a vector whose compo-
nents are equal to 21 é‘_fc-(vaf) for =1,2 and 3.
i= )
Eventually, for incompressible fluids, we must add
(2) div V=0

0. Reynolds looked for an operator P acting on V and p in such a way that

P(T/'}) satisfies a Navier-Stokes equation with a supplementary term, the turbulent
one, considered as added to the external force

3) 022X = p[F—div((V - PF)RT ~ PPN +104P(V )

— pdiv(P(V)QP(V))—grad(P(p))
It has been proved (cf. [1] M. L. Dubreil-Jacotin) that if P acts on variable
t only, then (8) is a consequence of (2) if we add to some continuity and
stationary assumptions on P, which means commutation with translations, the

equation:

P(f*)=(Pf)’'~P(f— Pf)’
This leads to the functional equation characterizing Reynolds operators which i1s
(4) P(f Pg+g Pf)=Pf Pg+P(Pf Pg)
Reynolds operators have been studied by many authors (cf. (1] G.C. Rota).

In this work, we present a generalization of these operators, the so-called D(«)

operators. In order to obtain interesting representation theorems, we restrict
ourselves to special functions, e.g. periodic ones, or more generally almost-
periodic functions.

This paper is divided into

I Reynolds Operators over periodic functions

I Operators of type D(«) over periodic functions

I Operators of type D(1) over periodic functions

I Generalization to almost-periodic functions

v A need for other generalizations
On rather particular functional spaces, we shall try to distinguish between the
averaging properties and the smoothing properties which are both consequences of
the functional equation satisfied by Reynolds operators or more generally by D(a)
operators. |

1_I_11 the seqvuél, the space of all continuous functions taking complex values and



Some Averaging Process 231

defined over a topological compact space X, will be denoted by C(X), its elements
being denoted by f, g etc. A linear operator on C(X) will be denoted by P or R.

Generally, A will be a sub-semigroup of the additive group Z of all relative

integers. Z * is the sub-semigroup of all positive or zero integers, Z 1is the sub-
semigroup of all negative or zero integers. We denote by I the identity operator
on C(X). Some of the results given in this paper have previously been announced

(cf. [4] J.G. Dhombres).
I. Reynolds Operators Over Periodic Functions

Let % be any integer. We denote by C(T,) the algebra of all continuous 2r/k-
periodic functions defined over R and taking complex values. For 2=0, C(T,) 1s
simply the set of all constant functions. On C(T',) we set up the uniform norm.

For every real number %, operator T, represents the translation operator:
T, fix—f(x+h)

A linear operator P:C(T ,)—C(T),) is stationary when, for every real number

h, we have the commuative property
(5) P(T,(F))=T,(P())

In order to describe all continuous and stationary Reynolds operators, we must
begin with some definitions.
Let 2 be any integer

(@) For =0, we define P0f=-2lﬂ- ff(t) dil

2T Ny e B
(b) For k#0, we define P, f(x)= f(Si)-!-_f(x. _k__)'; +f(x 7 1)

Operator P, is defined over C(T',) and takes its values in C(T ).

Now let s be any complex number (finite or not) such that s is different from
a multiple of 2 We define R, from C(T,) into C(T;) by

+I'l"
R

() R f()=—""—= [e

2Sin" T
R —%

and for the case where s is equal to oo:
(d) R f(x)=f(x) R__ 1s the identity operator.

il

~1ts

f(:r-—z‘—--—g—)dt

THEOREM 1. A non-zero stationary and continuous operator over CT,)) is a

Reynolds operator if and only zf there exist an integer kb and a complex number s,
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different from a multiple of k, such that
P=RoP,

in

PROOF. Consider functions e, defined by e,: x—e * where # is any relative

integer. These functions are the only eigen-functions for all operators T, and,
due to the commutation property (5) for P and T,, are also eigen-functions of P,

which glves:
(6) P(e,)=a(n)e,.

Compute Reynolds relation with f=e_and g=e,
(7) P(e, P(e,)+e,P(e ))=P(e,)P(e,)+P(P(e,)P(e,))

which implies a relation for the function #—ae(#) defined over Z:
(8) a(n+m)(a(n)+a(m))=a(n)a(m)+a(rn)a(m)e(n+m)
Now define a subset A\ of Z by A={nln=Z: a(n)#0}.

0 belongs to A\, because 232(0)=62(0)+G3(0) yields a(0)=0 or «(0)=1. But
a(0)=0 implies a(#)=0 for all » and so P=0 which is excluded. Therefore ¢(0)
=1.

Suppose e(n+m)=0, then a(n)a(m)=0 and this proves that if # and m are in
/\, SO 1s n+m.

Suppose # is in A, then (a(n)+a(—n))=2a(n)a(—n) which proves that a(—n)
is different from O and so —# is in A\.

Finally, we have proved that A 1s a subgroup of Z. Therefore, there exists an
integer %2 such that A=£~4Z.

Relation (8), for # and m restricted to /\, provides

1 1 1

a(n) a(m) —_cz(n—l—m) T1

Defining b(n):a(ln) —1 which is possible for » in A, we get the familiar

functional eguation
(9 b(n+m)=b(n)-+b(m)

As n# and m are multiples of 2, we then get
b(n) =—-b(E)

where 0(k) is a complex number such that b8(#z)+1 is different from zero. This

implies &6(k) i for all # which are non-zero multiples of Z.

(a) The case b(k)=0 implies e(#)=1 for » in A. According to the continuity
of the operation P, if f is expanded in Fourier series along
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-
: —int
fNchem where ¢ ()= 217? f (e " dt
then Pf, in turn, possesses the following Fourier expansion
inkx

N

-+
If =0, we get directly Pf=co( f), that is Pf=P,f= zln f f(t) dt according to

the notation defined just before theorem 1.

If % is different from 0, we see that P=P, where
2 k—1

(10) Pk(f)(x)"“f(x)_l_f(x} i );;.-l_f(x: k 277:)1

and we note that P,(f)=/, that is P, is the identity operator.

(b) The second case is (k)70 and we suppose first that 2=1. We can then

define 5(1)= ; where s is a complex number but not a relative integer. Then

the Fourier expansion of Pf is given by

(11) waﬂZcﬂ— i P
(”TH)

—1 : .
because a(n)z(n-—;—ﬂ— 1) for » in A\=242 due to equation (9).

“Then, taking derivatives in the sense of distribution, we get the following

differential equation concerning Pf:

(12) = AL 5+ PRG=f0)

8

Using the fact that Pf must belong to the algebra C(T;) we find, after some

computation, a solution for (12):

. 20 +n
A

P&)=R f)=""=m ¢ " fa—Ddt=—z—[¢™ Fa—t-n)as

(¢) When %£#1, then we first use P, from C(T,) into C(T,) and then compose
it with R {rom C(T,) into C(T,)CC(T;) in order to obtain the operator P, the

image of which 1s included in C(T,)

P=RoP,

This comes from the fact that we have obtained the following Fourier series
for Pf:
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nR
(13) Pf~3le,, e
H I 1

S

because we have taken b(k)=~§- and so s must not be a multiple of 2 Conversely,

it is possible to verify that any operator like P,=R_ oP, or R, oP,is a continuous

Reynolds operator which commutes with translation operators on the algebra C(T')).

COROLLARY 1. An idempotent, non-zero, stationary and continuous Reynolds
operator on C(T',) is of the form P, as given by theorem 1.

It suffices to consider the action of P on the Fourier expansion of function f.

Operators like P, appear as typical averaging operators, the average being taken
along an arithmetical progression. It is possible to prove directly that P, satisfies
the following equation

(14) P (fP,(g))=P,(fOP,(g)
which is the functional equation characterizing semi-mulitplicative symmetric
operators. Equation (14) tells us that P,(g) behaves as a constant for operator

P,, which appears intuitively to be an averaging property.
Conversely, all non-zero stationary and continuous operators on C(T',) satisfying
equation (14) are of the form P,. More generally, following the same lines, we

can prove

PROPOSITION 1. A bounded limear operator P on C(Tl) such that P(1)=1 and

which is multiplicatively symmetric, that is which satisfies P(fPg)=P(gPf) for
all f and g in C(T)), ts stationary if and only if it is of the form P, of theorem l.

The intuitive notion of average can now be made mathematically precise, by

using equation (14) or only the multiplicatively symmetric relation in Proposition
1 (cf. [1], [2] J. G. Dhombres).
Obviously, with averaging properties, P, also manifests smoothing properties.

For example, if f 1s of bounded variation, then V(P, )<V (f), where V denotes
the total variation of J.

Theorem 1 asserts that P is a Reynolds operator if it is made up of the com-
position of an operator P, and an operator R. This last operator multiplies the
amplitude ¢, of the z-th harmonic e, by (#/s+ 1)_1. This means that R_also has
a smoothing property in the sense that R_f is more regular than f because its

n-th Fourier coefficient is more quickly converging towards zero when # tends to
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infinity. For example, Rs(f), for f in C(T,), always possesses an absolutely

convergent Fourier series as can be seen by the following inequality

¢, () | [~ 1 \%
- 2 % ¥
(15) 2] PR R oL XD N e
S | ‘

We have seen that operators P, possess both averaging and smoothness properties.

However, R has only a smoothing property, according to the following easy
corollary:

COROLLARY 2. A continuous and stationary Reynolds operator P over C(T'() is one-
to-one if and only if P is an operator of type R.

Let us now give a quantitative measurement of the smoothness of R, as an
operator from C(T,) into C(T ).

If £ has Fourier coefficients such that >_ ]cn( )l is a convergent series, then

we have

V(R H<ZE-e ()]
where V(R_ f) denotes the total variation of R,f and ¢ is defined by

Inf _1_+1 1
neZ |l on sl ¢°*

If f itself is of bounded variation, then
‘ V(R FSASV(S)

and A(s) is a constant depending upon s only. Obviously A(s)=[IR,|l which is

the norm of the bounded operator R, for the uniform norm (Note, by contrast
that [[P,ll=1).

Operator R, transforms real functions into real functions if and only if s is a

purely imaginary number, let us say s=¢s’. In this last case ||[RJ|=1 and even R,

is a positive operator, As a by-result, we note that if P is a linear Reynolds
operator satisfying the hypothesis of theorem 1, and transforms real functions
into real functions, then P is a positive operator because £  and P, are positive
operators under these conditions.

Writing s=s;+17s,, we find from a simple computation

Rl 2 VL
N 41
2

(16) when 5,0, then [IR,lI= | “sinrs. ' >1
-1

2
sh 7S,

\
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and so we can find an operator R, the norm of which is as near to 1 as we
wish,

TS,
(17) when s,=0, then [R|= Sinzs; > 1 for s;7#0.

Naturally, if P and P’ are operators satisfying the hypothesis of theorem 1,
then PoP’=P’oP. However the commutative product RoR,=R,R  is not a

Reynolds operator by opposition with P,oP,=P,, where m is the lowest common
multiple of 2 and /.

Obviously, theorem 1 remains true if we replace the continuity of the operator
P for the uniform norm by the continuity of P for a norm Lp, with p>1, or

any functional norm for which f—c, (f) are continuous linear forms.

II. Operators of Type D(a) Over Periodic Funetions

We have introduced Reynolds operators via the Navier-Stokes equation and the
notion of a mean. An algebraical study of this notion leads to other types of
operators which have been gathered under the name of “multiplicatively related”
operators (cf. (2] J.G. Dhombres). A subclass of such operators Q generalizes
Reynolds operators: they are called D(«) or D’(ex) operators and will be studied now:

D(a) Q(fQe+gQN=aQ(fg)+(1-QfQe+Q(Qf-Qg)
D’ (ex) Q(fQg+gQNH= Qfg)+(1-a)QfQe+aQ(QfQg)

-1

A multiplication by o =~ exchanges types D(«) and D'(@) whereas D(0Q) is a

Reynolds operator and D’(0Q) is a Baxter operator. We shall call operator D an
operator of type D(1).

THEOREM 2. Let o be a real number such that a#l1 aend 0<a<ll. Let Q be a
bounded linear stationary operator over C(T',) of type D(at). Suppose moreover that

Q(1)=1 and that Q transforms real funciions into real functions. Then there exisis
a rea! number B and

Qf(n)=a33(1-a) f(x+k6)

Conversely, this last equatio: furnishes a linear operator of type D{(c).

PROOF. With notations of §2, we get the functional equation satisfied by
n—a(n), where a(z) is the eigenvalue of e, for operator P, :

(18) (a(n)+a(m))a(nt+m)=ce(nt+m)+(1—a)a(n)a(m)+a(nt+m)a(n)a(m)
We now define three disjoint subsets of Z:
AN={n|\ncEZ a(n)*#0 and e(n)#a)
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No= n|nEZ ;a(n)=0}
No=1rlneZ;0(n)=0a}

OEA due to our hypothesis Q(1)=1. If a(#+m)=0, then e(m)e(m)=0 and if
a(n+m)=ca, then (a—a(n))(a—a(m))=0. These two properties imply that if »

and m are 1n A, (#+m) 1s also in A. In addition, we get a( _”):T-'—- ngfg;?z( 7y

so that —#& /\ as soon as # does, using the fact that a0 and a#1.
Finally, A is a subgroup of Z and so A=kZ for some integer 2 We also
notice that A, ,=—/\, Moreover, if » and m belong to A, then aa(n+m)=0

and so /\, 1s a semi-group in Z. But if we suppose that 1 does not belong to A,

then it belongs to either A, or A, and as % belongs to A, we must have £2=0.
There are two cases:

k=0. No=2Z°\[0] and A_=Z"\[0] if we suppose, for example, that 1
belongs to A\,. With a function f in C(T’,), we associate its Fourier expansion

X

f-""-" ;cﬂem
Due to the assumed continuity of Q, we get the following Fourier expansion

for Qf:
waco-l— o> cnem

>0

But an operator R defined by f-—erNZ:cﬂei”x is not bounded for the uniform

n=0

norm according to a theorem due to M. Riesz (cf. {1] A. Zygmund). This theorem
tells us that case 2=0 cannot happen.

k0. Then 2=1and A=Z. We rewrite equation (18) and after having

defined &(n)= afl ( a(lﬂ) - :‘x

(19) b(n+m)=0b(n)b(m)
But to equation (19), we must add &(#)3%40 and b(n)#(1—a) ! for all n. We

), we find a simpler equation

get, solving (19), d(n)=a" where a=5(1), and so
aon=((1- L)L)
Due to the continuity of operator Q, we get for the Fourier expansion of Qf
(20) U~ ((1-2)a"+2) T,

As stated in the hypothesis of theorem 2, we assume that f conserves real
functions, so that, for all »

inx

a(n) =a(—n) and so |a|=1
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We then define e=¢* where B 1s a real number and from (20) derive easily
a difference equation concerning Qf which we now denote by Qs of

| 1 1
(21) (1=2-)Qg o Fa+B+2-Qp (W) =F()
This difference equation has at most one solution in C(T,), except when for
an integer #, (l—é—)emﬁ+ clr =0. But as « is real, and different from zero, the

exceptional cases are ¢=2 with Bz-—%(mod 2rn/n). 1f then 0<a<2 and a#l,

equation (21) has a solution given by the following absolutely convergent series

Qp o )= 32 (1~ ) flx+2B)

which we obtained after having taken the inverse of —jr—(a‘o—a—a)a‘ﬁ) in the

convolution algebra of bounded Radon measures on T,. This ends the proof of

theorem 2.

NOTE 1. Suppose S8=amn, then equation (21) can also be written as
) Qg of(2)— Qg S(a+an)
%4

+Q‘3, JSCxtan)=f(x)

When « tends to zero, we formally get a differential equation for

a—0

(22) =+ PR =)

and so P appears as a Reynolds operator P,, according to notation of §1 (cf.

Equation (12)). This result m_ight have been foreseen because D(0) operator is
a Reynolds operator.

NOTE 2. If 8 is not an ergodic element of R (mod 27), for example 8= 2::
then we find that Qs,of is a relatively usual weighted mean
(x)= £ [ — ( __&L) oo (1 — )1 ( __r—1 )]
Qp, o —(1—-a)" f)+A=aOf{ 2= == )ttt (Q=a)" fla——27

(When « tends to zero, Qﬁ. o J(x) formally tends towards P, f(x) where P, is

the averaging operator occurring in theorem 1),

If 8 is an ergodic element (mod 27), that is if [eikﬁ] sz 1S dense In the unit
circle, then Qg ,f(x) appears to be the Abel summation process of the divergent

series if(x—l— kB). For a given B, a—Qg ,f is an analytic function of a.

k=19
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COROLLARY 3. Suppose operator Q satisfies the hypothesis of theorem 2 with 0<
a<l. Then, Q is of type Q. g for an ergodic B if and only if Qf(0)=0 implies
=0 for a positive function f.

If B8 is ergodic, and 0<d<1, Qf(0)=0 implies f(kB)=0 for all relative integers
k, so that f=0. The converse is easily derived.

We get [IQ, ﬁ||=1 for all 8 and if f is of bounded variation, we get the following
smoothing property

V(Q, <V ()

However, Q, 5 cannot be used as an averaging operator because of the following

result:

COROLLARY 4. An operator satisfying the hypothesis of theorem 2 is a bijective
operator.

Equation (21) also yields for the uniform norm

(23) Qg fI=IAl  for  1<a<2
and |

2 ~1
(24) (-2=1) TIAIKIQp, LIS for 0<a<1

Due to (21), operator Q g, o 2PPEArSs as a multiple of the resolvant of a convolution
operator. This operator being the convolution by a Dirac measure & 8

L -1
Qﬁ,a_FX(é‘O'{_(fx—'l)aﬁ) o
Such a Dirac measure J4 induces a convolution operator M according to
Mf=0 g/ and M is a multiplicative operator:

(25) | M(fg)=(Mf)(Mg)
This last result immediately leads to this generalization. Let M be a bounded
linear operator on C(T,), satisfying (25). We suppose that (a—1) does not belong

to the spectrum of M. Consider an operator Q, defined by Q, =aea(/+(a—1)M Y~
which gives:

(26) M=—"7_,
Starting from M(Q,f-Q,g)=M(Q,IHM(Q, &), we get
QufQue —a(fQ e+ 8QuN)+a fe=(1-)(QfQue —aQ, (Q,Q,e))
and finally Q_ appears as an operator of type D(a), when we exclude a=0
and e=1. The converse statement is also true, namely if Q a,":'is an operator of
type D, for which 1 does not belong to the spectrum, ‘then (2'6)' furnishes a
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bounded and multiplicative linear operator.

THEOREM 3. Let Q be a bounded linear operator on C(T,). Suppose Q(1)=1 and

suppose that Q possesses a bounded inverse. Operator Q is of type D(c) for 0<a<2
and o« # 1 if and only if there exists a continuous 2rn~periodic function ©@:R—R
such that

Qf=a(1-a) o

wheyre P denotes the composition of k-times © by itself.

First, suppose that Q is D(«). Then M= Il___fo is a bounded multiplicative
operator on C(T,) such that M (1)=1. Then, for every x, in T}, f>Mf(x,) is a
continuous and multiplicative form on C(T',) and so Mf(x,)=f(3,) according to a
well-known result. (cf. (1] N. Dunford-J.T. Schwartz). We write y,=@(xy)
and using the continuity of operator Q,, we deduce the continuity of ®. Then

Mf=fo @, But we also have

(27) (l—ad)M=I—aQ™"
which yields MQ=QM, that is
(28) QUfo®)=Qf o
Finally we get the following functional equation, by using (27) and (28)
(29) (1-—>-)Qfed+2-Qf =7

The unique solution in C(T,), within 0<a<2, is

(30) Qf=a35(1-a)' fo0'

Conversely (30) defines an operator D(«a) satisfying the hypothesis of theorem
3. We notice that Q is an isometry for 1<<a<2 and a positive operator for 0<a<1
and that inequalities (24) remain wvalid.

III. Operators of Type D Over Periodic Funetions

This type is in fact the only remaining case to be studied, even if we do not
suppose Pe=e, as a detailed analysis would reveal:

(31 P(fPg+gPf)=P(fg)+P(PfPg)
With our previous notations, we get a functional equation for a(#):
(32) a(n+m)(a(n)—1)(a(m)—1)=0

which yields Pe=e or Pe=0.
First Case: Pe=e. Asin §2, we define A\, Agand A, as subsets of Z. Equation
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(82) proves that both A,and ¢ ,\; are semi-groups of Z. Moreover if a(2r) is differ-
ent from zero, then a(#)=1 and if a(2%2)=0, we get a(—2r)=1 and so a(—#n)=1.

This proves that, for any #, either z or —# belongs to A\;. Such features distinguish
type D. Subsets € A; and A, are semi-groups of Z which do not contain 0 and so

they are both contained in Z* or in Z~. For example, for a positive integer #,,
we may take A;=]—oco,#,]; Ay=[27, oo[ and leave the values of a(#) to be
arbitrary in A=1n; 2n,[. Such operators are common in harmonic analysis for
computing means of Fourier series. For instance, let P, be an operator D such
that the values of a(n), for » between #y and 2#,, are located on the straight line
between a(#n,)=1 and a(2n,)=0. Let P’ be an operator, also of type D for which
a'(n)=a(—n). Then, operator VnuzPﬂn o P’ =P"nnn PmI is the de la Vallee Poussin

g
operator (cf. [1] A. Zygmund). In the same way, we may find Dirichlet
operators. It is not the place here to exhibit properties of these usual summation

operators which can be deduced directly from the functional equation (31).

Second Case: Pe=0. Equation (31) yields P°=P and we check that A=0. It
appears that A, is semi-group of Z containing O and this fact is distinctive. We

must notice the interesting particular case of an idempotent Baxter operator which
satisfies a functional equation, simpler than (31).

(33) P(fPg+gPf)=P(fg)+PfPg
For such an operator, A\; is also a semi-group and we find (cf. [2] J.G.
Dhombres)
AN=Z" or A\=Z~
In the first case for example, we get

Inx
Pf~2_c.e
=10

However, M. Riesz’ theorem ascertains that such an operator is not continuous
for the uniform norm, being continuous for a norm i (T',) when +oo>p>1.

IV. Generalization to Almost-Periedie Functions

Starting from a turbulent fluid, it might have appeared strange to restrict
ourselves to periodic functions. In fact, what we needed was to be able to use
Fourier analysis as a tool. We can extend our methods to the different kinds of

almost periodic functions, that is to functions which are the limits for different
: : . : Il I ¥ 5
norms, of generalized trigonometric polynomials like 2> c, e "

n=n

number. More generally, we shall use some particular resulis of abstract harmonic

where Zn is a real
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analysis, which are summarized in [1] J.G. Dhombres, where references are
given.

Let G be an abelian, locally compact topological group. We use G to denote
its dual, that is the group of all continuous characters of G with the open-compact
topology. A continuous function taking complex values on G is almost periodic if

N=M3

it is the uniform limit of generalized trigonometrical polynomials like >Z¢ <%, ).

H==n1

With each such function is associated its unique generalized Fourier series:
2.6

Another characterization of such almost periodic functions f is that the set
[T, fleq of translates of f is a relatively compact subset for the topology of

uniform norm on C(G). The set of all almost-periodic functions constitutes a C*-
algebra, which we denote by A(G).

Algebraically and topologically, A(G) is isomorphic with the algebra of all
continuous functions over G where G is a compact group containing G as a dense
subgroup. G is the Bohr compactification of G.

Continuous linear operators of type D(«), which commute with the translations
generated by G on A(G), can be investigated along the same lines as in the case
where G=T1::Z?. Each character of G is an eigen-function for P, that is P(%)

=a(x)x. We replace the functional equation D{(a) by a functional equation
concerning a(x). Obviously, for general G, subgroups (like A) have not the
simple aspatﬁt of the subgroups of Z and generally we cannot use differential
equations like in the Reynolds case on C(T',). Moreover représentation formulae

like those giving R or P,, or like formula in Theorem 2, are not easy to dis-

cover. Various algebraical or topological assumptions can be made for G, G or
P 1n order to diminish the number of different possible cases. We shall list here
some results without proofs. In the isomorphism between A(G) and C(G), let &(f)
be the image of f. We get, for +oco>p>1, a norm on A(G) by defining:

1/p
)

p
M,(H=([|oCr@ |ax) " and M (H=Supl )]

1&=G
An analytical operator P is, by definition, such that its range cannot simulta-
neously contain f and f (complex conjugacy) unless f 1s a constant. '

THEOREM 4. There exists a bijection between the set of all semi-groups N of G
whicn transform G into an ordered group and the sialionary Baxter operators P
on A(G) which are continuous for M 5 with co>p>1. More specifically, let /\ be
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such a semi-group, then

Pf""'""" b Ccﬁn: f)<x:- fn>
Xy EN

where c(X,, f) is the generalized Fourier coefficient of f at 2.

THEOREM 5. There exists a bijection between the continuous functions @ from G
into G and the stationary operators P of iype D(a) (with 0<a<1 and P(1)=1)
which possess a bounded inverse over A(G) when G is an abelian locally compact
group. More specifically,

0 k ,
b(PH=a% (1~ b(f)e0"
where & denotes the composition of k-times @ by iiself.
V. A Need for Other Generalizations

From the point of view of functional analysis, operators acting as means, or
averaging operators, must be defined on functional spaces. We have tried to show
in the preceding sections that interesting representation theorems can be obtained
for operators D(«), which are defined by some functional equation, when they
operate on algebras of almost-periodic functions. In retrospect, after our introduction
using the Navier-Stokes equation and related non-linear equations, our investigations
make sense if such equations possess, for some common boundary conditions,
solutions which are almost-periodic. This is the case and there exist nowadays
numerous results of that kind. This is not the place here to quote the precise
theorems and we shall just give a recent reference ([1] L. Amerio, J. Prouse).
However, a rather technical example will be detailed in a forthcoming paper ( [3]
J. G. Dhombres). It must also be added that from a practical point of view,
we can expect, and sometimes may prove, that the operators previously exhibited
behave as averaging operators, even for functions which are not almost-periodic,

and that our representation formulae are approximatively correct.

On another front, special functions, the so-called pseudo-random functions
(“fonctions pseudo-aléatoires”) have been investigated specially for the study of
turbulent fluid motion (cf. ([1] J. Bass). Nowadays, various representation
theorems and natural generalizations are known. Moreover, it has been proved
that some non-linear partial differential equations, including the Navier-Stokes
equation, possess solutions which are pseudo-random functions. (For recent results,
and vf';‘i;t‘icﬁ'.ls'j refereﬁ'cés on those functions, we refer “to [2]" J. Bass). These
pseudo-random functions, which we choose to take on the real axis to make

- things simpler, are defined by the following asymptotic property:
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h— o0 IT'—co

Lim (Lim 2—1:,: f FO+RFDED =0

Eventually we may add a regularity assumption like continuity. This definition
means that the correlation between f and T, f is small if & is big enough. Such

functions may have an irregular local aspect but may retain a certain kind of
periodical behaviour just like the turbulent solution of the Navier-Stokes equation.
To compute means on such functions is obviously a natural but unfortunately an
arduous task. In fact, very few results are so far available, in part because
known representations of usual pseudo-random functions are highly technical. We
shall merely point out a result which achieves a splitting for an averaging
operator. To avoid the introduction of too much new material, we shall only use
weak almost periodic functions, but a similar result can be reached for pseudo-
random functions with the help of a theorem from F. Jakobs.

On an abelian locally compact topological group G, a weak almost periodic function
is a continuous function on G, with complex values, such that the set [T',f], . 1s
a relatively compact subset of C(G) equipped with the weakened topology deduced
from the uniform norm. The set W(G) of weak almost periodic functions can be

split up into an algebraic direct sum:
W(G)=A(G)DF(G)
A distinctive aspect of functions belonging to F(R) is the following property

(cf. [1] and [2] W. Eberlein).

THEOREM 6. A stationary operator, comntinuous for the uniform norm on W(G),
(S the direct sum of two such operators acting of A(G) and F(G) respectively:
P=P,®P,

We shall prove theorem 6 in the case where G=R to avoid new notations. Any
function f in A(R) is the uniform limit of a family of generalized trigonometric
polynomials [g,]. But as P is stationary, we get P(e1)=a(2)ez, so that P(g,) is
also a generalized trigonometric polynomial, which converges towards P(f). This

function P(f) is then an element of A(R).
T

+
. — At
Now, let us define F(x, A, T)=~;—T f flx+De . For the pointwise conver-
- T

gence in x;, we get |
Lim F(x, A, T)ﬁéz(f)ew

T—co
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where ¢,(f) is the generalized Fourier coefficient of f

47 _
e;(A=Lim 25 [f)e™™ at
-T

Te—vdoo

In fact, we have the following inequality
. +T »
P A D =D Ile(D~57 [ 7™ arl+LZs1

Let us now use T(f) to denote the SEt;, éJRTh( f) of all translates of f. Using

the Riemann converging to F(x, A, T), we see that F(x,A, T) is the uniform limit
of elements belonging to the convex and circled hull of I'(f). The closure of the
circled hull of T'(f) in the topology o(C(R), C’'(R)) is compact because, by
definition of a weak almost periodic function, the set T'(f) is relatively compact
for the weakened topology. Furthermore, by a theorem of Krein-Smulian (cf. [1]
W.F. Eberlein) the closed convex hull is also compact. We then have proved
that F(x, A, T) belongs to the closed convex and circled hull of 7f. which is a

compact set of o(C(R), C'(R)). Using a theorem of [1] W.F. Eberlein,

pointwise convergence and convergence for the weakened topology are the same
on such a compact set. Therefore C,( f)e"'j‘jr is the limit of F(x,T,A) for c(C(R),

C’'(R)) when T tends to infinity. But a linear operator, continuous for the
uniform norm on C(R) is also continuous for the weakened topology (cf. [1]
N. Dunford, J.T. Schwartz). This gives us the proof that P(F(x,4,T)),
where P acts on F(x, A, T) as a function of x, converges for the weakened thOIOgy

towards C,-LCf)P(em)=Cz(f)a(2)ew. On the other hand, P(F(x, 4, T)):—Qli Pf(x

-7

—I-z,")e”z'Ilt dt as P 1is continuous for the uniform norm, and stationary. This
last expression converges towards c,(Pf )ew(for the weakened topology). Finally,
we get

c,(P=a(e;(F)
But if f is in F(R), then ¢,(f)=0 for all A in R because of the relation

— 00

+T
] 2
lcz(f)lsglm(glf« fT 163} df)=0
Therefore, ¢,(Pf)=0 for such a function and so Pf is not in ACR) but belongs
to F(R). This ends the proof of theorem 6.

NOTE 1. Theorem 6, added to known results on the algebra A(G), means that
it simply remains to study the action of an operator D or D(0) on F(G). But this
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“simply” must not be confused with “easily” as there does not exist, to my
knowledge, a general result for the spectral synthesis of weak almost periodic
functions. Such a result could be derived by Krein-Milman theorem if it were
possible to identify, with exponentials e;, the extremal points of the closed and

circled convex hull of 7.

NOTE 2. When P is a semi-multiplicative linear operator on W(G), and a
stationary bounded operator, then e(2) is the characteristic function of a subgroup
A in G. Is there any restriction on these subgroups? Naturally, we may construct
a non-measurable subgroup for the Lebesgue measure on R (by using the axiom
of choice and for a certain selection of points in R/Q for example). On the other
hand, a measurable proper subgroup of R" (or of T") is of measure O for the Haar
measure on these groups as can be shown by using the Haar property of the

measure and order properties of R”

NOTE 3. Here, we have not studied limits of semi-groups of Reynolds operators.
Such a study will sometimes, although not always, lead to theorems on algebras

C(X), analogous to martingale theorems on spaces 1700, 5, .

NOTE 4. It might also be of practical interest to look for the following simplified
prediction problem raised by Professor Nguyen Dinh Ngoc. Let f be a pseudo-
random function and P be a given averaging operator(of type D(a) for example).
Suppose that we have a detailed knowledge of the values of f on the negative
part of the real axis, how is it possible to derive the value of the average Pf at
a positive value of the variable?
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Paris, France Bangkok, Thailand
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