Kyungpook Math. J. Volume 12, Number 2 December, 1972

ON QUASI-COMPLETE SPACES

By Mun-Gu Sohn and Bong Dae Choi

G. D. Creede [1] introduced quasi-complete spaces in connection with problems of metrizability and raised the open question whether all quasi-complete spaces are $w\Delta$ -spaces. In [2], example 1.11 exhibits a *p*-space which is not $w\Delta$ -space. Since *p*-spaces are quasi-complete spaces, this shows that a quasi-complete need not be $w\Delta$ -space.

In this paper, we give a simple characterization of quasi-complete space, and we show that $w\Delta$ -spaces and quasi-complete spaces are equivalent in the class of a completely regular θ -refinable spaces.

All topological spaces are assumed to be T_1 . The set of positive integers is denoted by N.

DEFINITION 1. [1]. A T_1 -space X is said to be *quasi-complete* provided that there is a sequence $\{\mathscr{Y}_n\}_{n=1}^{\infty}$ of open covers of X with the following property; if $\{A_n\}_{n=1}^{\infty}$ is a decreasing sequence of non-empty closed subsets of X and if there exists an element $x_o \in X$ such that, for each n, there is a $B_n \in \mathscr{Y}_n$ with $A_n \cup \{x_o\}$

$$\subset B_n$$
, then $\bigcap_{n=1}^{\infty} A_n \neq \phi$.

DEFINITION 2. [3]. A T_1 -space X is a wA-space if there exists a sequence $\{\mathscr{P}_n\}_{n=1}^{\infty}$ of open covers of X such that, if $\{A_n\}_{n=1}^{\infty}$ is a decreasing sequence of non-empty closed subsets of X and there exists $x_o \in X$ for which $A_n \subset St(x_o, \mathscr{P}_n)$ for all n, then $\bigcap_{n=1}^{\infty} A_n \neq \phi$. A sequence $\{A_n(x)\}_{n=1}^{\infty}$ of subsets of X, with $x \in A_n(x)$ for each $n \in N$, is called an *x*-sequence if $x_n \in A_n(x)$ implies that $\{x_n\}_{n=1}^{\infty}$ has a cluster point in X. We shall give a simple characterization of quasi-complete which will be used

frequently.

Mun-Gu Sohn and Bong Dae Choi

THEOREM 1. X is quasi-complete if and only if there exists a sequence $\{\mathscr{P}_n\}_{n=1}^{\infty}$ of open covers of X such that, for each $x \in X$ and $B_n \in \mathscr{P}_n$ with $x \in B_n$, a sequence $\{\bigcap_{n=1}^k B_n | k \in N\}$ is an x-sequence.

PROOF. Let $x \in X$ and $B_n \in \mathscr{G}_n$ with $x \in B_n$. For each $k \in N$, take $x_k \in \bigcap_{n=1}^k B_n$. If $\{x_k\}_{k=1}^{\infty}$ has no cluster point in X, we let $A_k = \{x_n \mid n \ge k\}$, then $\{A_k\}_{k=1}^{\infty}$ is a

decreasing sequence of non-empty closed subsets of X and $A_k \cup \{x\} \subset B_k$. Since X is quasi-complete, we have $\bigcap_{k=1}^{\infty} A_k \neq \phi$. But $\bigcap_{k=1}^{\infty} A_k = \phi$, since $\{x_k\}$ has no cluster point in X.

To prove the converse, let $\{A_n\}_{n=1}^{\infty}$ be a decreasing sequence of non-empty closed subsets of X and there exist $x \in X$ such that, for each n, $B_n \in \mathscr{P}_n$ with $A_n \cup \{x\} \subset B_n$. Assume $\bigcap_{n=1}^{\infty} A_n = \phi$. Since $A_k \neq \phi$, we can find $x_k \in A_k$ for each k. Then $x_k \in A_k \cup \{x\} \subset B_k$. Therefore $x_k \in \bigcap_{n=1}^k B_n$ for each k, since $\{A_k\}_{k=1}^{\infty}$ is a decreasing sequence. We show that $\{x_k\}$ has no cluster point in X. For each $p \in X$, since $\bigcap_{n=1}^{\infty} A_n = \phi$ and $A_n \supset A_{n+1}$, there exists integer N such that $p \notin A_n$ for any $n \ge N$. Then $\mathscr{C}A_N$ is open set containing p and $x_n \notin \mathscr{C}A_n$ for any $n \ge N$. Thus p is not cluster point of sequence $\{x_k\}$.

The following lemma was proved in [2].

226

LEMMA 2. A completely regular space X is a p-space if and only if there is a sequence {𝒫_n}[∞]_{n=1} of open covers of X satisfying;
(a) ∩[∞]_{n=1} G
_n is compact.
(b) {∩^k_{n=1} G|k∈N} is an x-sequence.

Using a proof analogous to one given by Burke for Theorem 1.4 of [2], we have the following.

LEMMA 3. A completely regular quasi-complete space X is a p-space if every closed countably compact subset of X is compact.

PROOF. Let $\{\mathscr{G}_n\}_{n=1}^{\infty}$ be a sequence of open covers of X such that, for each

On Quasi-Complete Spaces 227

 $x \in X$ and $B_n \in \mathscr{G}_n$ with $x \in B_n$, sequence $\{\bigcap_{n=1}^k B_n | k \in N\}$ is an x-sequence. Since X is completely regular space, for each n, let \mathcal{U}_n be open cover of X such that $\{\overline{G} | G \in \mathscr{U}_n\}$ refines \mathscr{G}_n . We show that $\{\mathscr{U}_n\}$ is a sequence of open covers of X satisfying the condition of Lemma 2. Let $x \in X$ and $G_n \in \mathcal{U}_n$ with $x \in G_n$, we find $B_n \in \mathscr{G}_n$ such that $\overline{G}_n \subset B_n$. So $\bigcap_{n=1}^k \overline{G}_n \subset \bigcap_{n=1}^k B_n$. Thus $\{\bigcap_{n=1}^k \overline{G}_n | k \in N\}$ is x-seq.

uence. Let $\{x_k\}_{k=1}^{\infty}$ be any sequence in $\bigcap_{n=1}^{\infty} \overline{G}_n$, then $x_k \in \bigcap_{n=1}^k \overline{G}_n$ for each k. Since $\{\bigcap_{n=1}^{k} \overline{G}_{n} | k \in \mathbb{N}\}$ is x-sequence, $\{x_{k}\}$ has a cluster point in $\bigcap_{n=1}^{\infty} \overline{G}_{n}$. So $\bigcap_{n=1}^{\infty} \overline{G}_n$ is closed countable compact. By hypothesis and Lemma 2, X is *p*-space.

A space X is said to be θ -refinable [4] if, for every open covering \mathcal{U} of X, there is a sequence $\{\mathcal{U}_n\}_{n=1}^{\infty}$ of open refinements of \mathcal{U} such that, if $x \in X$, there is $m(x) \in N$ such that x is in at most a finite number of elements of $\mathscr{U}_{m(x)}$. Burke [2] showed that p-spaces, $w\Delta$ -spaces and strict p-spaces are equivalent in the class of completely regular θ -refinable spaces.

Moreover we can add quasi-complete among the above equivalent conditions.

THEOREM 4. For a completely regular θ -refinable space X, the following conditions are equivalent;

- (1) X is p-space,

(2) X is strict p-space,

(3) X is $w\Delta$ -space,

(4) X is quasi-complete.

PROOF. $(4) \Rightarrow (1)$ is clear from Lemma 3, since closed countably compact subsets are compact in a θ -refinable space [4]. $(3) \Rightarrow (4)$ is clear from definition.

THEOREM 5. X_i is quasi-complete if and only if $\prod_{i=1}^{\infty} X_i$ is quasi-complete.

PROOF. if; It Is clear from the fact that closed subspace of quasi-complete is quasi-complete.

Only if; For each *i*, let $\{\mathscr{G}_n^i\}$ be a sequence of open covers of X_i such that, for each $x \in X_i$ and $B_n^i \in \mathscr{G}_n^i$ with $x \in B_n^i$, sequence $\{\bigcap_{n=1}^k B_n^i | k \in N\}$ is x-sequence. Let $\mathscr{U}_1 = \{\langle G_1^1 \rangle | G_1^1 \in \mathscr{G}_1^1\}, \quad \mathscr{U}_2 = \{\langle G_1^2 \rangle | G_1^2 \in \mathscr{G}_1^2\}$

Mun-Gu Sohn and Bong Dae Choi

$$\mathscr{U}_3 = \{ \langle G_2^1 \rangle | G_2^1 \in \mathscr{Y}_2^1 \}, \qquad \mathscr{U}_3 = \{ \langle G_1^3 \rangle | G_1^3 \in \mathscr{Y}_1^3 \}$$

228

Then $\{\mathcal{U}_n\}_{n=1}^{\infty}$ is a sequence of open covers of $\prod_{i=1}^{\infty} X_i$ satisfying the condition of Theorem 1.

Kyungpook University

-

REFERENCES

- [1] G. D. Creede, Concerning semi-stratifiable spaces, Pacific. J. Math. 32 (1970) 47-54.
 [2] D. K. Burke, On p-spaces and w∆-spaces, Pacific J. Math. 35(1970) 285-296.
 [3] Carlos J. R. Borges, On metrizability of topological spaces, Canad. J. Math. 20 (1968) 795-804.
- [4] J.M. Worrell, Jr., and H.H. Wicke, Characterizations of developable spaces, Canad.
 J. Math. 17 (1965) 820-830.
- [5] J. Dugundji, Topology, Allyn and Babon, Boston, Mass., 1966.