Kyungpook Math. J. Volume 12, Number 2 December, 1972

A NOTE ON k-SEMISTRATIFIABLE SPACES

By Jin Ho Kwak

1. Introduction

In [1], D. J. Lutzer introduced k-semistratifiable spaces which lies between the class of stratifiable spaces and the class of semi-stratifiable spaces. And he proved that a semimetrizable spaces is stratifiable if and only if it is k-semistratifiable. In this paper, it is shown that (a) the union of two closed k-semistratifiable spaces is k-semistratifiable, (b) a strong Fréchet k-semistratifiable space is stratifiable, (c) the image of a k-semistratifiable space under a pseudo-open k-mapping is k-semistratifiable, (d) the image of a k-semistratifiable space under a pseudo-open compact mapping is semi-stratifiable, (e) a regular strong Fréchet space which has a σ -closure preserving cs-network is stratifiable.

Most terms which are not defined in this paper are used in Dugundji [4], all spaces are T_1 , a mapping is a continuous surjection, and the set of natural numbers is donoted by N.

2. Definitions and elementary properties

Following definitions are well known (cf. [1], [2]).

DEFINITION 2.1. [1]. A topological space X is a stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that (a) $\overline{U}_n \subset U$ (b) $\bigcup_{n=1}^{\infty} U_n = U$ (c) $U_n \subset V_n$ whenever $U \subset V$. This correspondence $U \rightarrow \{U_n\}_{n=1}^{\infty}$ is called a stratification for the space X. DEFINITION 2.2. [1]. A topological space X is a semi-stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of closed subsets of X such that (a) $\bigcup_{n=1}^{\infty} U_n = U$

(b) $U_n \subset V_n$ whenever $U \subset V$.

.

214 Jin Ho Kwak

This correspondence $U \to \{U_n\}_{n=1}^{\infty}$ is called a *semi-stratification* for the space X.

DEFINITION 2.3. [1]. A *k*-semistratification of the space X is a semi-stratification $U \to \{U_n\}_{n=1}^{\infty}$ for the space X such that given any compact subset K with $K \subset U$, there is a natural number n with $K \subset U_n$.

A space is k-semistratifiable if and only if there exists a k-semistratification for the space

for the space.

D.J. Lutzer showed, in [1], that stratifiable spaces are k-semistratifiable and k-semistratifiable spaces are semi-stratifiable, but these implications cannot be reversed.

M. Henry, in [2], obtained the following

LEMMA 2.4. A space X is stratifiable (semi-stratifiable) if and only if to each closed subset $F \subset X$ one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

- (a) $F \subset U_n$ for each n
- (b) $\bigcap_{n=1}^{\infty} \overline{U}_n = F$ ($\bigcap_{n=1}^{\infty} U_n = F$) (c) $U_n \subset V_n$ whenever $U \subset V$.

A correspondence $F \rightarrow \{U_n\}_{n=1}^{\infty}$ is a dual stratification (semi-stratification) for

the space X whenever it satisfies the three conditions of Lemma 2.4.

We may state the following Lemma 2.5. for similar reasons.

LEMMA 2.5. A space X is k-semistratifiable if and only if to each closed set $F \subset X$, one can assign a sequence $\{U_n\}_{n=1}^{\infty}$ of open subsets of X such that

(a) $\bigcap_{n=1}^{\infty} U_n = F$ (b) $U_n \subset V_n$ whenever $U \subset V$ (c) if $F \cap K = \phi$ with K compact in X, then there is an open set U_n with $U_n \cap K = \phi$.

A correspondence $F \rightarrow \{U_n\}_{n=1}^{\infty}$ is a *dual k-semistratification* for the space X whenever it satisfies the conditions of Lemma 2.5.

Certainly, we may suppose that any stratification (semi-stratification, k-semi-

A Note on k-Semistratifiable Spaces 215

stratification) $U \to \{U_n\}$ of X is *increasing*, i.e. $U_u \subset U_{n+1}$ for each $n \in N$, therefore any dual stratification (dual semi-stratification, dual k-semistratification) $F \to \{U_n\}$ of X is *decreasing*, i.e. $U_n \supset U_{n+1}$ for each $n \in N$.

LEMMA 2.6. [1]. Suppose X has a semi-stratification $U \rightarrow \{U_n\}_{n=1}^{\infty}$ with the property that if U is open X and $p \in U$, then $p \in Int(U_n)$ for some $n \in N$. Then X

is stratifiable.

3. Main theorems

For this section, we consider the following terminologies. A mapping $f: X \to Y$ is *pseudo-open* [2] if for each $y \in Y$ and any neighborhood U of $f^{-1}(y)$, it follows that $y \in Int[f(U)]$. A mapping $f: X \to Y$ is *compact* [2] if $f^{-1}(y)$ is compact for each $y \in Y$, and f is a *k*-mapping if $f^{-1}(K)$ is a compact set in X whenever K is a compact set in Y.

A *k*-network in a space [3] is a collection of subsets \mathscr{F} such that given any compact subset K and any open set U containing K, there is a $F \in \mathscr{F}$ such that $K \subset F \subset U$. A *cs*-network [3] is a collection of subsets \mathscr{F} such that given any convergent sequence $x_n \to x$ and any open set U containing x, there is an $F \in \mathscr{F}$ and a positive integer m such that $\{x\} \cup \{x_n : n \ge m\} \subset F \subset U$. Note that any *k*-network is a *cs*-network.

A space X is strong Fréchet [5] if whenever $\{A_n\}_{n=1}^{\infty}$ is a decreasing sequence

of sets in X and x is a point which is in the closure of each A_n , then for each $n \in N$ there exists an $x_n \in A_n$ such that the sequence $x_n \to x$. Clearly, any first countable space is strong Fréchet.

THEOREM 3.1. If X, Y are closed (in the union) k-semistratifiable spaces, then $X \cup Y$ is k-semistratifiable.

PROOF. Let U be open in $X \cup Y$. Then $U = (X \cap U) \cup (Y \cap U)$, and $X \cap U$, $Y \cap U$ is open in X, Y respectively. Set $U_n = (X \cap U)_n \cup (Y \cap U)_n$, for each $n \in N$, where $X \cap U \to (X \cap U)_n$, $Y \cap U \to (Y \cap U)_n$ is an increasing k-semistratification for the space X, Y respectively. Then it is easily shown that the correspondence $U \to \{U_n\}_{n=1}^{\infty}$ is a k-semistratification for $X \cup Y$.

THEOREM 3.2. A strong Fréchet k-semistratifiable space is stratifiable

PROOF. Let U be an open set in strong Fréchet k-semistratifiable space X and let

Jin Ho Kwak 216

 $U \rightarrow \{U_n\}_{n=1}^{\infty}$ is an increasing k-semistratification for the space X, and $p \in U$. Assume that $p \in X - Int(U_n) = \overline{X - U_n}$ for each $n \in N$. Since X is strong Fréchet, there exists an $x_n \in X - U_n$ such that the sequence $x_n \rightarrow p$. Furthermore, we may assume that each point x_n is in the open set U. Thus $\{x_n : n \in N\} \cup \{p\}$ is a compact subset of U. Therefore, there exists a positive integer m such that $\{x_n : n \in N\} \cup \{p\}$

 $\subset U_n$ for each $n \ge m$, which is contradict to choicing x_n . Thus, by Lemma 2. 6., X is stratifiable.

Using an analogue to proof of Theorem 2.3. in [2], the following Theorem 3.3. and 3.4. may be proved.

THEOREM 3.3. If X is k-semistratifiable and f: $X \rightarrow Y$ is a pseudo-open kmapping, then Y is k-semistratifiable.

PROOF. If $F \subset Y$ be a closed, then $f^{-1}(F)$ is closed in X. For each closed set F of Y and each natural number n, let $F_n = \operatorname{Int} [f(f^{-1}(F)_n)]$, where $f^{-1}(F) \to f^{-1}(F)$ $f^{-1}(F)_n$ is a dual k-semistratification for X. We will show that the correspondence $F \to \{F_n\}$ is a dual k-semistratification for Y. Since $f^{-1}(F) \subset f^{-1}(F)_n$ for each $n \in N$, $f^{-1}(F)_n$ is an open neighborhood of $f^{-1}(y)$ for each $y \in F$, and f is a pseudo-open mapping, therefore, we have $F \subset \bigcap_{n=1}^{\infty} Int[f(f^{-1}(F)_n)] = \bigcap_{n=1}^{\infty} F_n$. For the reverse direction, assume $z \notin F$. Then $f^{-1}(z) \cap f^{-1}(F) = \phi$ with $f^{-1}(z)$ compact in X, and therefore there exists a natural number *n* such that $f^{-1}(z) \cap f^{-1}(F)_n = \phi$. Then $z \notin F_n$ for some *n*. Consequently, we have $F = \bigcap_{n=1}^{\infty} F_n$. Next, if F and G are closed subsets of Y such that $F \subset G$, then clearly Int $[f(f^{-1}(F)_n)] \subset Int[f(f^{-1}(G)_n)]$. Finally, let $K \cap F = \phi$ in Y with K compact and F closed in Y. Then $f^{-1}(K) \cap$ $f^{-1}(F) = \phi$, $f^{-1}(K)$ is compact and $f^{-1}(F)$ is closed in X. Hence, $f^{-1}(K) \cap$ $f^{-1}(F)_n = \phi$ for some *n*. Therefore, $K \cap \operatorname{Int} [f(f^{-1}(F)_n)] = \phi$. By Lemma 2.5., Y is k-semistratifiable.

By a minor change of the proof of Theorem 3.3., we have the

THEOREM 3.4. If $f: X \rightarrow Y$ is a pseudo-open compact mapping and X is k-semistratifiable, then Y is semi-stratifiable.

Therefore, we have the Theorem 2.3. in [2] as Corollary.

COROLLARY 3.5. The image of a stratifiable space under a pseudo-open compact

A Note on k-Semistratifiable Spaces 217

mapping is semi-stratifiable.

THEOREM 3.6. A regular strong Fréchet space which has a o-closure preserving cs-network is stratifiable

PROOF. Let $\mathscr{F} = \bigcup_{n=1}^{\infty} \mathscr{F}(n)$ be a σ -closure preserving *cs*-network for the regular space X. By the Theorem 3.2., it is sufficient to prove that the space X is k-

semistratifiable. And, since X is regular, we may assume that $\mathscr{F}(n) \subset \mathscr{F}(n+1)$ for each $n \in N$, and that \mathscr{F} is a collection of closed subsets of X. For an open set U and for each $n \in N$, let $U_n = \bigcup \{F \subset U : F \in \mathscr{F}(n)\}$. Then $U \to \{U_n\}_{n=1}^{\infty}$ is a k-semistratification for X. Indeed, suppose $K \subset U$ with K compact and U open in X and $K-U_n \neq \phi$ for each $n \in N$. We choose $x_n \in K-U_n$. Then, since K is compact, $\{x_n\}$ has an accumulation point x. Let $A_n = \{x_i : i \ge n\}$ for each $n \in N$, then A_n is a decreasing sequence and $x \in A_n$ for each $n \in N$. Therefore there exists a $p_n \in A_n$ such that the sequence p_n converge to x. Hence, there exists a positive integer *m* and $F \in \mathscr{F}$ such that $\{p_n : n \ge m\} \cup \{x\} \subset F \subset U$. Let $F \in \mathscr{F}(n_0)$. Then $\{p_n:n\geq m\}\subset U_i$ for each $i\geq n_0$, which is contradict to choicing x_n . The remain part is clear.

With the aid of Theorem 3.1. of [6], we have the following

COROLLARY 3.7. A regular first countable space which has a σ -closure preserving

cs-network is a Nagata space.

A regular space which has a σ -locally finite k-network is called an \aleph -space [1].

COROLLARY 3.8. A strong Fréchet X-space is stratifiable.

Kyungpook University

REFERENCES

[1] D.J. Lutzer, Semimetrizable and stratifiable spaces, General Topology and its Applications 1 (1971) 43-48.

[2] M. Henry, Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings, Pacific J. Math., 37 (1971), 697-700.

218 Jin Ho Kwak

[3] P.L.Strong, Quotient and pseudo-open images of separable metric spaces, Proc. Amer. Math. Soc. 33 (1972) 582-586.

-

- [4] J. Dugundji, Topology, Allen and Bacon, Boston, Mass., 1966.
- [5] F. Siwiec, Sequence-covering and countable bi-quotient mappings, General Topology and its Applications 1 (1971) 143-154.
- [6] J.G.Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961) 105-

126.

•

-