ON AN APPLICATION OF THE STEREOGRAPHIC PROJECTION TO CP ${ }^{\boldsymbol{m}}$

By Shun-ichi Tachibana

§ 0. Introduction. Let M^{n} (resp. $M^{\prime n}$) be a Riemannian space of metric g (resp. g^{\prime}) and ϕ a diffeomorphism from M^{n} to $M^{\prime n}$. If ϕ maps any geodesic in M^{n} to a geodesic in $M^{\prime n}$, it is called projective. The projective curvature tensor W is preserved by any projective map ϕ, i.e. we have $W=\phi^{*}\left(W^{\prime}\right)$. For a diffeomorphism ϕ if there exists a scalar function σ such that $\phi^{*}\left(g^{\prime}\right)=e^{2 \sigma} g$, we call ϕ conformal. The conformal curvature tensor C is preserved by any conformal map.
Let K^{n} be a Kählerian space and $\Gamma_{\mu \nu}^{\lambda}$ Christoffel symbols with respect to a local coordinate $\left\{z^{\lambda}\right\}$. A curve c in K^{n} is called a holomorphically planar (or H-plane) curve if c is represented as $z^{\lambda}=z^{\lambda}(t)$ and satisfy

$$
\frac{d^{2} z^{\lambda}}{d t}+\Gamma_{\mu \nu}^{\lambda} \frac{d z^{\mu}}{d t} \frac{d z^{\nu}}{d t}=\alpha \frac{d z^{\nu}}{d t},
$$

where α is a complex-valued function of t, [9], [11].
Consider a diffeomorphism ϕ of K^{n} to another $K^{\prime n}$. An H-projective map is a diffeomorphism which maps any H-plane curve to an H-plane curve. A holomorphic ϕ is H-projective if and only if there exists a self-adjoint vector ρ_{λ} such that

$$
\phi^{*}\left(\Gamma_{\mu \nu}^{\prime \lambda}\right)=\Gamma_{\mu \nu}^{\lambda}+\rho_{\mu} \delta_{\nu}^{\lambda}+\rho_{\nu} \delta_{\mu^{\prime}}^{\lambda}
$$

where $\Gamma_{\mu \nu}^{\prime \lambda}$ mean the Christoffel symbols of $K^{\prime n}$.
We have known a lot of theorems about H-projective maps which correspond to ones of projective maps, [9], [11]. Especially, corresponding to W, the H projective curvature tensor P has been shown as an invariant under H-projective maps, [11].
Now it would be natural to ask for a diffeomorphism ϕ of K^{n} to $K^{\prime n}$ having the property x such that
projective: H-projective $=$ conformal : x.

It seems that the Bochner curvature tensor K of K^{n} gives support to the existence of x. Because we may consider a symbolical relation

$$
W: P=C: K
$$

to be valid among the defining equations of these tensors, [4], [12]. Actually, some theorems for Riemannian spaces of $C=0$ have been generalized to for Kählerian spaces of $K=0$, [4], [5], [10]. Thus K would be preserved by ϕ of property x.

On the other hand, let S^{n} be the unit sphere in the Euclidean ($n+1$)-space E^{n+1}. If we denote by Φ the central (or stereographic) projection from S^{n} to an E^{n} (selected suitably), Φ is a projective (or conformal) map. Hence, for any proiective (or conformal) local transformation ϕ in $E^{n}, \Phi^{-1} \circ \phi \circ \Phi$ is projective (or conformal) on S^{n}.

The complex projective space $C P^{\boldsymbol{m}}$ is one of typical examples of Kählerian spaces, and is a quotient space of $S^{2 m+1}$ by a certain equivalence relation, [1]. Making use of the central (or stereographic) projection Φ of $S^{2 m+1}$ to $E^{2 m+1}$, an equivalence relation can be introduced in $E^{2 m+1}$ and the induced map $\widetilde{\Phi}$ is defined so that the commutativity holds in the diagramm:

For the central projection Φ, we may expect $\widetilde{\Phi}$ to be H-projective. $\widetilde{\Phi}$ would have the property x for the stereographic Φ.
The purpose of this paper is mainly to discuss on $\widetilde{\Phi}$ for the stereographic projection $\Phi . x$ is not fixed yet in this paper and still remains as a question.

Throughout the paper we shall agree with the following conventions.
(I) The ranges of indices.

$$
\begin{aligned}
& A, B, C, \cdots=1, \cdots, 2 m+2, \\
& a, b, c, \cdots=1, \cdots, m+1, \\
& \lambda, \mu, \nu, \cdots=1, \cdots, m, \\
& j, k, h, \cdots=1, \cdots, m, 1^{*}, \cdots, m^{*} . \\
& \text { (II) } \\
& \Delta=m+1, \Delta^{*}=2 m+2 .
\end{aligned}
$$

(III) Indices with *.

For real coordinates- say $\left\{Y^{A}\right\}, Y^{a^{*}}=Y^{a+(m+1)}$,
For complex coordinates-say $\left\{z^{\lambda}\right\}$,

$$
z^{\lambda^{*}}=\bar{z}^{\lambda} \text { (complex conjugate), }\left\{z^{h}\right\}=\left\{z^{\lambda}, \bar{z}^{\lambda}\right\} .
$$

($\mathbb{1})$ The summation convention. For examples,

$$
\begin{aligned}
& Y^{A} Y^{A}=Y^{1} Y^{1}+\cdots+Y^{2 m+2} Y^{2 m+2}, \\
& z^{\lambda} d z^{\lambda *}=z^{1} d z^{1 *}+\cdots+z^{m} d z^{m^{*}}, \\
& u_{\lambda} Y^{\lambda}=u_{1} Y^{1}+\cdots+u_{m} Y^{m} .
\end{aligned}
$$

§1. The canonical metric of $\boldsymbol{C P} \boldsymbol{P}^{\boldsymbol{m}}$. Consider the Euclidean space $E^{2 m+2}$ of dimension $2 m+2, m \geq 1$, and we denote by $\left\{Y^{A}\right\}$ a fixed orthogonal coordinate system of origin O. Let $\left\{w^{a}\right\}$ be the complex coordinate system in $E^{2 m+2}$ associated to $\left\{Y^{A}\right\}$:

$$
w^{a}=Y^{a}+i Y^{a^{*}} .
$$

$S^{2 m+1}$ means the unit hypersphere of center O defined by

$$
Y^{A} Y^{A}=w^{a} w^{a^{*}}=1 .
$$

Let $\left(w^{a}\right)$ and ($w^{\prime a}$) be points on $S^{2 m+1}$. If there exists a θ such that

$$
\begin{equation*}
w^{\prime a}=e^{i \theta} w^{a}, \quad 0 \leq \theta \leq 2 \pi \tag{1.1}
\end{equation*}
$$

then we shall say $\left(w^{a}\right)$ to be equivalent to ($w^{\prime a}$), and represent it by $\left(w^{a}\right) \sim\left(2 w^{\prime 2}\right)$. As this relation \sim clearly satisfies the three conditions of equivalence relation, $S^{2 m+1}$ is classified into the set

$$
C P^{m}=S^{2 m+1} / \sim
$$

of the equivalence classes. $C P^{m}$ is called the complex projective space. It is an m (complex-) dimensional complex manifold with the natural structure. In fact, the natural local coordinates $\left\{V_{b}, z_{b}\right\}, b=1, \cdots, m+1$, of $C P^{m}$ is introduced as follows: For each b, U_{b} and V_{b} denote the sets given by

$$
U_{b}=\left\{\left(w^{a}\right) \in S^{2 m+1} \mid w^{b} \neq 0\right\}, \quad V_{b}=U_{b} / \sim,
$$

and let $\left\{z_{b}{ }^{\lambda}\right\}$ on V_{b}

$$
\begin{array}{ll}
z_{b}^{\lambda}=\frac{w^{\lambda}}{w^{b}}, & \lambda=1, \cdots, b-1, \\
z_{b}^{\lambda}=\frac{w^{\lambda+1}}{w^{b}}, & \lambda=b, \cdots, m .
\end{array}
$$

We shall consider a geometrical meaning of (1.1). In terms of $\left\{Y^{A}\right\}$, (1.1) is written as

$$
\begin{align*}
& y^{\prime a}=y^{a} \cos \theta-y^{a^{*}} \sin \theta \tag{1.2}\\
& y^{a^{*}}=y^{a^{*}} \cos \theta+y^{a} \sin \theta .
\end{align*}
$$

Let Y and \tilde{Y} be the vectors in $E^{2 m+2}$ defined by

$$
Y=\binom{y^{a}}{y^{a^{*}}}, \quad \tilde{Y}=J Y=\binom{-y^{a^{*}}}{y^{a}} .
$$

Here, J means the natural almost complex structure in $E^{2 m+2}$, i. e. the matrix

$$
J=\left(\begin{array}{cc}
O_{m} & -I_{m} \\
I_{m} & O_{m}
\end{array}\right)
$$

O_{m} and I_{m} being the zero and the unit matrix respectively. As the vector Y at $\left(Y^{A}\right)$ on $S^{2 m+1}$ is regarded as the unit normal vector to $S^{2 m+1}$ at the point, \tilde{Y} is tangent to $S^{2 m+1}$ at $\left(Y^{A}\right)$. The set of Y at each point $\left(Y^{A}\right)$ on $S^{2 m+1}$ constitutes a vector field \tilde{Y} over $S^{2 m+1}$, and it is known that \tilde{Y} is a unit Killing vector in $S^{2 m+1}$ with the natural structure of a space of constant curvature. \tilde{Y} is called a Sasakian structure on $S^{2 m+1}$. The equation (1.2) is written as

$$
Y^{\prime}=Y \cos \theta+\tilde{Y} \sin \theta
$$

Thus, the equivalence class of a point $\left(Y^{A}\right)$ is a great circle which is an integral curve of the Sasakian structure \tilde{Y} because of

$$
\left(\frac{d Y^{\prime}}{d \theta}\right)_{\theta=0}=\tilde{Y}
$$

It is known that $S^{2 m+1}$ is a fibre bundle over $C P^{m}$ with fibre S^{1}, called Hopf fibering.

Henceforward, our discussions will be done only in

$$
U_{\Delta}=\left\{\left(w^{a}\right) \mid w^{\Delta} \neq 0\right\} \text { and } V_{\Delta}=U_{\Delta} / \sim .
$$

The canonical (Kähler) metric of $C P^{m}$ is defined in V_{Δ} by

$$
\begin{equation*}
d s_{z}{ }^{2}=\frac{2}{f^{4}}\left(f^{2} d z^{\lambda} d z^{\lambda *}-\left|z^{\lambda *} d z^{\lambda}\right|^{2}\right), \tag{1.3}
\end{equation*}
$$

where

$$
z^{\lambda}=\frac{w^{\lambda}}{w^{\Delta}},
$$

$$
\begin{equation*}
f=\sqrt{1+u}, \quad u=z_{z}^{\varepsilon \cdot \varepsilon^{*}} . \tag{1.4}
\end{equation*}
$$

The metric (1.3) is written in the form

$$
d s_{z}^{2}=g_{j h^{2}} d z^{j} d z^{h}=2 g_{\lambda \mu^{*}} d z^{\lambda} d z^{\mu^{*}}
$$

with $g_{\lambda \mu}=g_{\lambda^{*} \mu^{*}}=0$ and

$$
g_{\lambda \mu^{*}}=\frac{1}{f^{4}}\left(f^{2} \delta_{\lambda \mu}-z^{\lambda^{*}} z^{\mu}\right)
$$

($g^{j h}$) is given by $g^{\lambda \mu}=g^{\lambda * \mu^{*}}=0$ and

$$
g^{\lambda \mu^{*}}=f^{2}\left(\delta_{\lambda \mu}+z^{\lambda} z^{\mu^{*}}\right)
$$

The Christoffel symbols $\Gamma_{j}{ }^{h}$ are all zero except
(1.5) $\quad \Gamma_{\mu \nu}^{\lambda}=-\frac{1}{f^{2}}\left(\delta_{\mu}^{\lambda} \nu^{*}+\delta_{\nu}^{\lambda} \mu^{\mu^{*}}\right)$
and their complex conjugates.
The non-vanishing components of the curvature tensor $R_{j k l}^{h}$ are ones which follow by the algebraic identities about $R^{h}{ }_{j k l}$ from

$$
R_{\mu \nu \omega^{*}}^{\lambda}=-\left(\delta_{\mu}^{\lambda} g_{\nu \omega^{*}}+\delta_{\nu}^{\lambda} g_{\mu \omega^{*}}\right)
$$

and their complex conjugates, [12].
It is $C P^{m}$ with this metric what we shall denote by $C P^{m}$ in the rest of this paper. $C P^{m}$ is a space of constant holomorphic curvature.
§2. The central projection $\widetilde{\Phi}$. Denoting the north pole of $S^{2 m+1}$ by $\left(y_{0}^{A}\right)$:

$$
y_{0}^{\Delta}=1, y_{0}^{A}=0, A \neq \Delta,
$$

we consider the tangent hyperplane

$$
E^{2 m+1}: \quad Y^{\Delta}=1
$$

of $S^{2 m+1}$ at $\left(y_{0}^{A}\right)$. Let

$$
\Phi: S^{2 m+1}-S_{\Delta}^{2 m} \longrightarrow E^{2 m+1}
$$

be the central projection, where $S_{\Delta}^{2 m}$ denotes the equator $Y^{\Delta}=0$ on $S^{2 m+1}$.
Consider a point $\widetilde{P} \in C P^{m}$. If $\tilde{P} \in V_{\Delta}$, the equivalence class \widetilde{P} contains a point $P\left(y^{A}\right) \in S^{2 m+1}$ such that $y^{\Delta} \neq 0$. As the equation of line $O P$ is

$$
Y^{A}=t y^{A}, \quad t: \text { real },
$$

the coordinates of $\Phi(P)$ are

$$
u^{A}=\frac{y^{A}}{y^{\Delta}} .
$$

If $P^{\prime}\left(y^{\prime A}\right)$ be a point equivalent to P, the coordinates of $\Phi\left(P^{\prime}\right)$ are $u^{\prime A}=y^{\prime A} / y^{\Delta}$ which are written by virtue of (1.2) as
(2.1)

$$
\begin{aligned}
& u^{\prime \lambda}=\left(y^{\lambda} \cos \theta-y^{\lambda^{*}} \sin \theta\right) / y^{\prime \Delta}, \\
& u^{\prime \lambda^{*}}=\left(y^{\lambda} \sin \theta+y^{\lambda^{* *}} \cos \theta\right) / \mathrm{y}^{\prime \Delta}, \\
& u^{\Delta^{*}}=\left(y^{\Delta} \sin \theta+y^{\Delta^{*}} \cos \theta\right) / y^{\prime \Delta}
\end{aligned}
$$

on $E^{2 m+1}$, where

$$
y^{\Delta^{\Delta}}=y^{\Delta} \cos \theta-y^{\Delta^{*}} \sin \theta .
$$

Since Φ is the central projection and \widetilde{P} is a great circle of $S^{2 m+1}$, the equation (2.1) represents a line on $E^{2 m+1}$ with parameter θ. On the other hand, it is evident geometrically that different two points of V_{Δ} go to two non-intersecting lines on $E_{2 m+1}$. Thus Φ induces a map from V_{Δ} into $E^{2 m+1} / \sim$, where \sim means the equivalence relation induced by Φ.

Next we shall consider

$$
\begin{equation*}
E^{2 m}: \quad Y^{\Delta^{*}}=0 \tag{2.2}
\end{equation*}
$$

on $E^{2 m+1}$, and find the point (denoted by $\widetilde{\Phi}(\widetilde{P})$) at where the line (2.1) meets with $E^{2 m}$.

At the point, we have from (2.1) and (2.2)

$$
y^{\Delta} \sin \theta+y^{\Delta^{*}} \cos \theta=0
$$

Substituting these values of θ into (2.1), we can get

$$
\begin{align*}
& u^{\prime \lambda}=\alpha\left(y^{\Delta} y^{\lambda}+y^{\Delta^{*}} y^{\lambda^{*}}\right) \\
& u^{\prime \lambda^{*}}=\alpha\left(y^{\Delta} y^{\lambda^{*}}-y^{\Delta^{*}} y^{\lambda}\right) \tag{2.3}
\end{align*}
$$

where

$$
\begin{equation*}
1 / \alpha=\left(y^{\Delta}\right)^{2}+\left(y^{\Delta^{*}}\right)^{2}=w^{\Delta} w^{\Delta^{*}} . \tag{2.4}
\end{equation*}
$$

Thus we obtain a map

$$
\widetilde{\Phi}: V_{\Delta} \longrightarrow E^{2 m}
$$

which brings \widetilde{P} to $\widetilde{\Phi}(\widetilde{P})$ given by (2.3).
We shall represent $\widetilde{\Phi}$ in terms of local coordinates

$$
\begin{equation*}
z^{\lambda}=\frac{w^{\lambda}}{w^{\Delta}} \quad \text { in } V_{\Delta} \tag{2.5}
\end{equation*}
$$

and the complex coordinate in $E^{2 m}$ given by

$$
\begin{equation*}
\alpha^{\lambda}=u^{\prime \lambda}+i u^{, \lambda^{*}} \tag{2.6}
\end{equation*}
$$

which is the restriction of $\left\{w^{a}\right\}$ in $E^{2 m+2}$ to $E^{2 m}$.
Substituting (2.3) into (2.6) and taking account of (2.4) and (2.5), we obtain $\alpha^{\lambda}=z^{\lambda}$. Hence we know that $\widetilde{\Phi}$ is given by

$$
z^{\lambda} \longrightarrow \alpha^{\lambda}=z^{\lambda}
$$

and consequently $\widetilde{\Phi}$ is $1-1$ holomorphic.
$\widetilde{\Phi}$ will be called the central projection of $C P^{m}$ to $E^{2 m}$.
Now consider the canonical (Kähler) metric

$$
d s_{\alpha}^{2}=2 d \alpha^{\lambda} d \alpha^{\lambda *}
$$

on $E^{2 m}$, then the induced metric on V_{Δ} by $\widetilde{\Phi}$ is

$$
\begin{equation*}
\tilde{\Phi}^{*}\left(d s_{\alpha}^{2}\right)=2 d z^{\lambda} d z^{\lambda *} \tag{2.7}
\end{equation*}
$$

The Christoffel symbols $\tilde{\Phi}^{*}\left(\Gamma_{\mu \nu}^{\prime \lambda}\right)$ of (2.7) being all zero, we have

$$
\Phi^{*}\left(\Gamma_{\mu \nu}^{\prime \lambda}\right)=\Gamma_{\mu \nu}^{\lambda}+\frac{1}{f^{2}}\left(\delta_{\mu}^{\lambda^{\prime *}}+\delta_{\nu}^{\lambda} z^{\mu *}\right)
$$

by taking account of (1.5). Consequently, $\widetilde{\Phi}$ is an H-projective transformation.
§ 3. The stereographic projection $\widetilde{\Psi}$. Let $P_{1}\left(y_{1}^{A}\right)$ be the south pole of $S^{2 m+1}$ given by

$$
y_{1}^{\Lambda}=-1, \quad y_{1}^{A}=0, \quad A \neq \Delta .
$$

Consider the stereographir, projection

$$
\Psi: S^{2 m+1}-\left\{P_{1}\right\} \longrightarrow E^{2 m+1}
$$

where

$$
E^{2 m+1}: \quad Y^{\Delta}=0
$$

For a point $P\left(y^{A}\right) \neq P_{1}$, the line $P_{1} P$ is given by

$$
Y^{A}=y_{1}^{A}+t\left(y^{A}-y_{1}^{A}\right), \quad t: \text { real },
$$

or equivalently

$$
\begin{aligned}
& Y^{A}=t y^{A}, \quad A \neq \Delta, \\
& Y^{\Delta}=-1+t\left(y^{\Delta}+1\right) .
\end{aligned}
$$

Therefore the value of t is

$$
t=\frac{1}{y^{\Delta}+1}
$$

at the point $\Psi^{(}(P)$, the intersecting point of line $P_{1} P$ with $E^{2 m+1}$.
Thus the coordinates of $\Psi(P)$ on $E^{2 m+1}$ are

$$
u^{A}=y^{A} /\left(y^{\wedge}+1\right), \quad A \neq \Delta
$$

For a point $P^{\prime}\left(y^{\prime A}\right)$ equivalent to $P, \widetilde{\varphi^{\prime}}\left(P^{\prime}\right)$ has coordinates

$$
u^{\prime A}=y^{\prime A} /\left(y^{\prime \Delta}+1\right), \quad A \neq \Delta
$$

and hence taking account of (1.2)

$$
\begin{align*}
& u^{\prime \lambda}=\beta\left(y^{\lambda} \cos \theta-y^{\lambda^{*}} \cdot \sin \theta\right) \\
& u^{\prime \lambda^{*}}=\beta\left(y^{\lambda^{*}} \cos \theta+\mathrm{y}^{\lambda} \sin \theta\right) \tag{3.1}\\
& u^{, \Delta^{*}}=\beta\left(y^{\Delta^{*}} \cos \theta+y^{\Delta} \sin \theta\right)
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{\beta}=y^{\Delta i}+1=y^{\Delta} \cos \theta-y^{\Delta^{*}} \sin \theta+1 . \tag{3.2}
\end{equation*}
$$

As Ψ is a conformal map, the class \tilde{P} of P is mapped by Ψ to a circle or a line given by (3.1).
Denoting

$$
E^{2 m}: \quad Y^{\Delta^{*}}=0,
$$

we shall find the intersecting points of (3.1) with $E^{2 m}$. At the points 0 takes the values such that

$$
\begin{equation*}
y^{\Delta^{*}} \cos \theta+y^{\Delta} \sin \theta=0 \tag{3.3}
\end{equation*}
$$

and hence we have

$$
\begin{equation*}
\cos \theta= \pm y^{\Delta} / \sqrt{\left(y^{\Delta}\right)^{2}+\left(y^{\Delta^{*}}\right)^{2}}= \pm y^{\Delta} / \sqrt{w^{\Delta} w^{\Delta^{*}}} \tag{3.4}
\end{equation*}
$$

if \widetilde{P} is in V_{Δ}.
In the following we shall adopt + sign in (3.4) and denote by $\widetilde{\Psi}(\tilde{P})$ the point corresponding to that value of θ.
The coordinates of $\widetilde{\Psi}(\widetilde{P})$ are

$$
\begin{align*}
& u^{, \lambda}=\gamma\left(y^{\Delta} y^{\lambda}+y^{\Delta^{*}} y^{\lambda^{*}}\right), \tag{3.5}\\
& u^{\lambda^{*}}=\gamma\left(y^{\Delta} y^{\lambda^{*}}-y^{\Delta^{*}} y^{\lambda}\right)
\end{align*}
$$

by (3.1), (3.2), (3.3) and (3.4), where

$$
\begin{equation*}
\gamma=1 /\left(w^{\Delta} w^{\Delta^{*}}+\sqrt{w^{\Delta} w^{\Delta^{*}}}\right) \tag{3.6}
\end{equation*}
$$

Next we shall represent $\widetilde{\Psi}$ in terms of local coordinates $\left\{z^{\lambda}\right\}$ in V_{Δ} and

$$
\begin{equation*}
\alpha^{\lambda}=u^{\prime \lambda}+i u^{\prime \lambda *} \tag{3.7}
\end{equation*}
$$

in $E^{2 m}$. Substituting (3.5) into (3.7) and taking account of

$$
z^{\lambda}=\frac{w^{\lambda}}{w^{\Delta}}=\frac{y^{\lambda}+i y^{\lambda^{*}}}{y^{\dot{\Delta}}+i y^{\Delta^{*}}}
$$

and (3.6), we can get

$$
\begin{equation*}
\alpha^{\lambda}=z^{\lambda /(f+1)} \tag{3.8}
\end{equation*}
$$

where f means the one in (1.4), i. e.,

$$
=\sqrt{1+u}, \quad u=z^{\varepsilon} z^{\varepsilon^{*}} .
$$

As we have

$$
\begin{equation*}
\alpha^{\lambda} \alpha^{\lambda^{*}}=\frac{f-1}{f+1}, \quad f=\frac{1+\alpha^{\varepsilon} \alpha^{\varepsilon^{*}}}{1-\alpha^{\varepsilon} \alpha^{\varepsilon^{*}}}, \tag{3.9}
\end{equation*}
$$

the equation (3.8) is solved for z^{λ} as
(3.10)

$$
z^{\lambda}=\frac{2}{1-\alpha^{\varepsilon} \alpha^{\varepsilon^{*}}} \alpha^{\lambda}
$$

It follows from (3.9)

$$
\begin{equation*}
\left|\alpha^{\lambda} \alpha^{\lambda *}\right|<1 \tag{3.11}
\end{equation*}
$$

and hence we get a diffeomorphism

$$
\tilde{\Psi}: V_{\Delta} \longrightarrow B^{2 m}
$$

given by (3.8), where $B^{2 m}$ is the domain in $E^{2 m}$ satisfying (3.11).
$\widetilde{\Psi}$ will be called the stereographic projection of $C P^{m}$ to $E^{2 m}$.
§4. The induced metric. We shall calculate the induced metric of the canonical (Kähler) metric

$$
d s_{\alpha}^{2}=2 d \alpha^{\lambda} d \alpha^{\lambda *}
$$

of $E^{2 m}$ by the stereographic projection

$$
\tilde{\Psi}: z^{\lambda} \longrightarrow \alpha^{\lambda}=z^{\lambda} /(f+1) .
$$

As we have

$$
d \alpha^{\lambda}=\frac{1}{f+1} d z^{\lambda}-\frac{1}{(f+1)^{2}} z^{\lambda} d f
$$

the induced metric is given by

$$
\begin{equation*}
\tilde{\Psi}^{*}\left(d s_{\alpha}^{2}\right)=\frac{2}{(f+1)^{2}}\left\{d z^{\lambda} d z^{\lambda^{*}}-(d f)^{2}\right\} \tag{4.1}
\end{equation*}
$$

On the other hand, the metric $d s_{z}{ }^{2}$ of $C P^{m}$ being (1.3), we have

$$
2 d z^{\lambda} d z^{\lambda *}=f^{2} d s_{z}{ }^{2}+\frac{2}{f^{2}}\left|z^{\lambda *} d z^{\lambda}\right|^{2}
$$

If we substitute the last equation into (4.1) and take account of

$$
\begin{aligned}
& d f=\left(z^{\lambda *} d z^{\lambda}+z^{\lambda} d z^{\lambda *}\right) / 2 f, \\
& \left|z^{\lambda *} d z^{\lambda}\right|^{2}-f^{2}(d f)^{2}=-\left(z^{\lambda *} d z^{\lambda}-z^{\lambda} d z^{\lambda *}\right)^{2} / 4
\end{aligned}
$$

then (4.1) reduces to the following

$$
\begin{equation*}
\tilde{\Psi}^{*}\left(d s_{\alpha}^{2}\right)=\frac{f^{2}}{(f+1)^{2}} d s_{z}^{2}-\frac{1}{2 f^{2}(f+1)^{2}}\left(z^{\lambda^{*}} d z^{\lambda}-z^{\lambda} d z^{\lambda^{*}}\right)^{2} . \tag{4.2}
\end{equation*}
$$

§5. The similarity and the inversion in $\boldsymbol{C} \boldsymbol{P}^{m}$. Let ϕ be a similarity at the origin in $E^{2 m}$:
(5.1) $\quad \phi: \alpha^{\lambda} \longrightarrow \alpha^{\lambda}=c \alpha^{\lambda}$,
where c is a positive constant.
A similarity $\tilde{\phi}$ of $C P^{m}$ at $O\left(\in V_{\Delta}\right)$ will be defined by

$$
\tilde{\phi}=\widetilde{\Psi}^{-1} \phi_{\circ} \tilde{\Psi}
$$

If we take account of (3.9), (3.10), (5.1) and

$$
\begin{aligned}
& z^{\lambda} \xrightarrow{\widetilde{Y}} \alpha^{\lambda} \xrightarrow{\longrightarrow} \alpha^{\prime \lambda} \xrightarrow{\widetilde{T}^{-1}} z^{\prime \lambda} \\
& \alpha^{\lambda}=\frac{1}{f+1} z^{\lambda}, \\
& z^{\prime \lambda}=\frac{2}{1-\alpha^{\prime \varepsilon} \alpha^{\prime \varepsilon^{*}}} \alpha^{\prime \lambda}
\end{aligned}
$$

$\tilde{\psi}$ is given in terms of the local coordinate $\left\{z^{\lambda}\right\}$ in V_{Δ} as follows:

$$
\begin{equation*}
z^{\lambda}=\frac{2 c}{\left(1-c^{2}\right) f+1+c^{2}} z^{\lambda} . \tag{5.2}
\end{equation*}
$$

Next we shall induce a transformation of $C P^{m}$ from an inversion in $E^{2 m}$ by $\widetilde{\Psi}$. Consider an inversion φ in $E^{2 m}$ with respect to a hypersphere of origin O_{α} and radius $r>0, \phi$ is given by an equation of the form

$$
\dot{\varphi}: \alpha^{\lambda} \longrightarrow \alpha^{\lambda}=1 \alpha^{\lambda},
$$

where 1 is a positive-valued function. As $\dot{\phi}$ satisfies

$$
\left(\alpha^{\lambda} \alpha^{\lambda *}\right)\left(\alpha^{\prime \mu} \alpha^{\prime \mu^{*}}\right)=\mathrm{r}^{4}
$$

we get by virtue of (3.9)

$$
\begin{equation*}
\mathrm{I}=\frac{r^{2}}{\alpha^{\varepsilon} \alpha^{\varepsilon^{*}}}=\frac{r^{2}(f+1)}{f-1} \tag{5.3}
\end{equation*}
$$

We shall define $\widetilde{\Psi}$ by $\tilde{\Psi}=\widetilde{\Psi}^{-1}{ }_{\circ} \tilde{\phi} \circ \Psi$ restricting the value of r to sufficiently small and the domain of $\dot{\varphi}$ suitably. $\tilde{\phi}$ will be called an inversion of $C P^{m}$ at O. The expression of $\tilde{\phi}$ is found as follows. The equation (5.2) being still true for a non-constant c, we have

$$
z^{\prime \lambda}=\frac{21}{\left(1-1^{2}\right) f+1+1^{2}} z^{\lambda} .
$$

If we substitute (5.3) into the last equation, it follows that

$$
z^{\prime \lambda}=\frac{2 r^{2}}{f-1-r^{4}(f+1)} z^{\lambda} .
$$

Putting $c=-1 / r^{2}$, we get for $\tilde{\phi}$

$$
z^{\prime}=\frac{2 c}{\left(1-c^{2}\right) f+1+c^{2}} z^{\lambda}
$$

Comparing this equation with (5.2), we know that the similarity and the inversion of $C P^{m}$ are given by an equation of the same form:

$$
\begin{equation*}
z^{\prime}=\frac{2 c}{\left(1-c^{2}\right) f+1+c^{2}} z^{\lambda}, \quad c \neq 0 \tag{5.4}
\end{equation*}
$$

§6. \boldsymbol{F}-transformation. Let C^{m} be the m dimensional complex number space with coordinate $\left\{z^{\lambda}\right\}$. The Fubini metric is defined by

$$
\begin{align*}
d s_{z}{ }^{2} & =2 g_{\lambda \mu^{*}} d z^{\lambda} d z^{\mu^{*}}=\frac{1}{S^{2}}\left(S \delta_{\lambda \mu}-2 k z^{\lambda *} z^{\mu}\right) d z^{\lambda} d z^{\mu^{*}} \tag{6.1}\\
& =\frac{2}{S} d z^{\lambda} d z^{\lambda^{*}}-\frac{4 k}{S^{2}}\left|z^{\lambda^{*}} d z^{\lambda}\right|^{2},
\end{align*}
$$

where

$$
S=S(u)=1+2 k u, \quad u=\dot{z}^{\varepsilon} z^{\varepsilon^{*}},
$$

aod k is a non-zero real constant.
Let F^{m} be the maximal domain of C^{m} in where S is positive, and we shall call $\left\{F^{m}, d s_{z}{ }^{2}\right\}$ a Fubini space which will be denoted by F^{m}.
F^{m} is a Kähler space of constant holomorphic curvature.
Our purpose of this section is to generalize the discussions in $\S 4$ and $\S 5$ to F^{m}.
Consider a transformation ϕ of F^{m} such that

$$
\begin{equation*}
\phi: z^{\lambda} \longrightarrow w^{\lambda}=t(u) z^{\lambda}, \tag{6.2}
\end{equation*}
$$

where t is a real-valued differentiable function of $u=z^{\varepsilon} z^{\varepsilon^{*}}$.
It is known [8] that any geodesic through the origin O in F^{m} is given by
(i) for $k>0$,

$$
z^{\lambda}=A^{\lambda} \tan (\sqrt{k} s)
$$

where A^{λ} are complex numbers satisfying $2 k A^{\lambda} \bar{A}^{\lambda}=1$.
(ii) for $k<0$,

$$
Z^{\lambda}=A^{\lambda} \tan h(\sqrt{|k|} s)
$$

where A^{λ} are complex numbers satisfying $2 k A^{\lambda} \bar{A}^{\lambda}=-1$.
Thus ϕ leaves invariant each geodesic through O, and hence it is a geodesic transformation at O in the sense of [7].
First we shall get the relation between $d s_{z}{ }^{2}$ and $\phi^{*}\left(d s_{w}{ }^{2}\right)$. If we put

$$
v=w^{\lambda} w^{\lambda^{*}}=t^{2} u \text {, }
$$

it holds that

$$
d s_{w}^{2}=\frac{2}{S(v)} d w^{\lambda} d w^{\lambda^{*}}-\frac{4 k}{S^{2}(v)}\left|w^{\lambda^{*}} d w^{\lambda}\right|^{2}
$$

Hence, taking account of

$$
\begin{aligned}
& d w^{\lambda}=t^{\prime} z^{\lambda} d u+t d z^{\lambda}, \quad t^{\prime}=d t / d u, \\
& d w^{\lambda} d w^{\lambda^{*}}=t^{\prime}\left(t^{\prime} u+t\right) d u^{2}+t^{2} d z^{\lambda} d z^{\lambda *}, \\
& w^{\lambda^{*}} d w^{\lambda}=t\left(t^{\prime} u d u+t z^{\lambda^{*}} d z^{\lambda}\right), \\
& \left|w^{\lambda^{*}} d w^{\lambda^{2}}\right|^{2}=t^{2}\left\{t^{\prime} u\left(t^{\prime} u+t\right) d u^{2}+t^{2}\left|z^{\lambda *} d z^{\lambda}\right|^{2}\right\},
\end{aligned}
$$

we have

$$
\begin{align*}
\phi^{*}\left(d s_{w}{ }^{2}\right)= & \frac{2}{S(v)}\left\{t^{\prime}\left(t^{\prime} u+t\right) d u^{2}+t^{2} d z^{\lambda} d z^{\lambda *}\right\} \tag{6.3}\\
& -\frac{4 k t^{2}}{S^{2}(v)}\left\{t^{\prime} u\left(t^{\prime} u+t\right) d u^{2}+t^{2}\left|z^{\lambda^{*}} d z^{\lambda^{2}}\right|^{2}\right\} .
\end{align*}
$$

On the other hand, it follows from (6.1) that

$$
2 d z^{\lambda} d z^{\lambda^{*}}=S(u) d s_{z}{ }^{2}+\frac{4 k}{S(u)}\left|z^{\lambda^{*}} d z^{\lambda}\right|^{2}
$$

Thus, if we substitute the last equation into (6.3), the following equation is obtained:

$$
\begin{equation*}
\phi^{*}\left(d s_{v}^{2}\right)=\frac{t^{2} S(u)}{S(v)} d s_{z}^{2}+\frac{2}{S(u) S^{2}(v)}(由), \tag{6.4}
\end{equation*}
$$

where

$$
\begin{align*}
(1(1)= & \left(1+2 k u\left(t^{\prime}\left(t^{\prime} u+t\right) d u^{2}+2 k t^{2}\left(1-t^{2}\right)\left|z^{\lambda^{*}} d z^{\lambda^{\lambda}}\right|^{2}\right.\right. \tag{6.5}\\
= & (1+2 k u) t^{\prime}\left(t^{\prime} u+t\right)\left(z^{\lambda^{*}} d z^{\lambda}-z^{\lambda} d z^{\lambda^{*}}\right)^{2} \\
& +2\left\{2(1+2 k u) t^{\prime}\left(t^{\prime} u+t\right)+k t^{2}\left(1-t^{2}\right)\right\}\left|z^{\lambda^{*}} d z^{\lambda}\right|^{2} .
\end{align*}
$$

Now we shall call a transformation ϕ of (6.2) an F-transformation, if $t(u)$ satisfies

$$
t(u)=\frac{2 c}{\left(1-c^{2}\right) f+1+c^{2}},
$$

where c is a non-zero real constant and

$$
f=\sqrt{S(u)}=\sqrt{1+2 k u}, \quad u=z^{\varepsilon} z^{z^{*}} .
$$

This transformation is a generalization of the similarity and the inversion of $C P^{m}$.
For an F-transformation ϕ, the coefficient of $\left|z^{\lambda^{*}} d z^{\lambda}\right|^{2}$ in (6.5) vanishes identically. In fact, it is proved as follows. If we put

$$
\rho=\rho(u)=\left(1-c^{2}\right) f+1+c^{2},
$$

then

$$
t=\frac{2 c}{\rho}
$$

and

$$
\begin{equation*}
1-t^{2}=2\left(1-c^{2}\right)\left\{\left(1+c^{2}\right) f+\left(1-c^{2}\right)(1+k u)\right\} / \rho^{2} \tag{6.6}
\end{equation*}
$$

hold good. As we have

$$
f^{\prime}=k / f, \quad \rho^{\prime}=\left(1-c^{2}\right) f^{\prime}=k\left(1-c^{2}\right) / f
$$

it follows that

$$
\begin{align*}
& t^{\prime}=-2 k c\left(1-c^{2}\right) / \rho^{2} f \\
& t^{\prime} u+t=2 c\left\{\left(1-c^{2}\right)(1+k u)+\left(1+c^{2}\right) f\right\} / \rho^{2} f \tag{6.7}
\end{align*}
$$

By (6.6) and (6.7) we can get

$$
2(1+2 k u) t^{\prime}\left(t^{\prime} u+t\right)+k t^{2}\left(1-t^{2}\right)=0
$$

which implies our assertion.
Thus we know that (17) in (6.4) reduces to

$$
(A)=(1+2 k u) t^{\prime}\left(t^{\prime} u+t\right)\left(z^{\lambda^{*}} d z^{\lambda}-z^{\lambda} d z^{\lambda^{*}}\right)^{2}
$$

for any F-transformation.
§ 7. The converse problem. Consider a transformation ϕ in $F^{m}-\{O\}$ given by (6.2), i. e.,

$$
\phi: z^{\lambda} \longrightarrow w^{\lambda}=t(u) z^{\lambda} .
$$

We assume that ϕ satisfies

$$
\phi^{*}\left(d s_{w}{ }^{2}\right)=\frac{t^{2} S(u)}{S(v)} d s_{z}{ }^{2}+\sigma\left(z^{\lambda^{*}} d z^{\lambda}-z^{\lambda} d z^{\lambda^{*}}\right)^{2}
$$

identically, where σ is a real-valued function.
The purpose of this section is to prove that the ϕ is an F-transformation.
Under the assumption, the problem is reduced to solving the differential equation for t :

$$
\begin{equation*}
2(1+2 k u) t^{\prime}\left(t^{\prime} u+t\right)+k t^{2}\left(1-t^{2}\right)=0 \tag{7.1}
\end{equation*}
$$

by virtue of (6.4) and (6.5).
If we put

$$
x=\sqrt{1+2 k u}, \quad y=1 / t,
$$

then (7.1) becomes the following equation:

$$
\begin{equation*}
\left\{\left(x^{2}-1\right) p-2 x y\right\} p+y^{2}-1=0 ; \quad p=d y / d x . \tag{7.2}
\end{equation*}
$$

Differentiating (7.2) with respect to x, we have

$$
\left\{\left(x^{2}-1\right) p-x y\right\} \frac{d p}{d x}=0
$$

and hence
(i) $\frac{d p}{d x}=0 \quad$ or
(ii) $\frac{p}{y}=\frac{x}{x^{2}-1}$.

Case (i). It follows that $y=C x+D$, where C and D are constant. Substituting
this form of y into (7.2) we get $D^{2}=C^{2}+1$ and

$$
y=C x \pm \sqrt{C^{2}+1}
$$

Therefore if we put

$$
c=-C \pm \sqrt{C^{2}+1},
$$

we can get

$$
t=\frac{2 c}{\left(1-c^{2}\right) x+1+c^{2}}
$$

which shows that ϕ under consideration is an F-transformation.
Case (ii). By integration, we have

$$
\begin{equation*}
\log |y|=\frac{1}{2} \log \left|x^{2}-1\right|+C \tag{7.3}
\end{equation*}
$$

If $k>0$, (7.3) gives $y=C \sqrt{x^{2}-1}$ which and (7.2) lead us to a contradiction $C^{2}+1=0$. If $k<0$, we have $y=C \sqrt{1-x^{2}}$, and by (7.2) $C= \pm 1$ follows. Therefore we have

$$
t= \pm 1 / \sqrt{1-x^{2}}= \pm 1 / \sqrt{-2 k u}
$$

Consequently it follows that

$$
w^{\lambda} w^{\lambda^{*}}=t^{2} z^{\lambda} z^{\lambda *}=-1 / 2 k
$$

which is contradictory to the diffeomorphism of ϕ.
REMARK. In $E^{2 m}$, let $\phi: z^{\lambda} \longrightarrow w^{\lambda}=t(u) z^{\lambda}$ be a (local or global) diffeomorphism. Then it is easy to see that ϕ satisfies

$$
\phi^{*}\left(d s_{w}^{2}\right)=\rho d s_{z}{ }^{2}+\sigma\left(z^{\lambda^{*}} d z^{\lambda}-z^{\lambda} d z^{\lambda^{*}}\right)^{2}
$$

if and only if ϕ is a similarity or an inversion with or without composition of the symmetry at O, where ρ and σ are real-valued functions of $\left\{z^{h}\right\}$. In this case, σ actually vanishes.

Ochanomizu University, Tokyo, Japan

BIBLIOGRAPHY

[1] S.S. Chern, Complex manifolds, Univ. of Chicago, Mimeographed Notes, 1956.
[2] M. Okumura, Some theorems on spaces with certain contact structure, Tôhoku Math. J., 14 (1962) 135-145.
[3] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure, II, Tôhoku Math. J., 13 (1961)

281-294.
[4] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep, of the Ochanomizu Univ., 18 (1967) 15-19.
[5] S. Tachibana and R.C. Liu, Notes on Kählerian metrics with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep., 22 (1970) 313-321.
[6] S. Tachibana, On Riemannian spaces admitting geodesic conformal transformations, to appear in Tensor.
[7] S. Tachibana, On the geodesic projective transformation in Riemannian spaces, to appear.
[8] S. Tachibana, On the characteristic function of spaces of constant holomorphic curvature, to appear.
[9] S. Tachibana and S. Ishihara, On infinitesimal holomorphically projective transformations in Kählerian manifolds, Tôhoku Math. J., 12 (1960) 77-101.
[10] H. Takagi and Y. Watanabe, On the holonomy groups of Kïhlerian manifolds with vanishing Bochner curvature tensor, to appear.
[11] Y. Tashiro, On holomorphically projective correspondences in an almost complex spaces, Math. J. Okayama Univ., 6 (1957) 147-152.
[12] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, (1953).

