# ON $C$-CONFORMAL KILLING TENSOR IN A COSYMPLECTIC MANIFOLD 

By Yong Bai Baik and Tae Yeong Seo

## 0 . Introduction.

It is well known that a skew symmetric tensor $u_{b c}$ is called a conformal Killing tensor if it satisfies the following equation:

$$
\begin{equation*}
\nabla_{a} u_{b c}+\nabla_{b} u_{a c}=2 \rho_{c} g_{a b} \tag{0.1}
\end{equation*}
$$

where $\rho_{c}$ is a certain vector field. It is a generalization of conformal Killing vector satisfying the Killing-Yano's equation.

On the other hand, Tachibana [2] has defined a conformal Killing tensor in another way. By the definition, a skew symmetric tensor field $u_{b c}$ called a conformal Killing tensor if there exists a vector field $p^{a}$ satisfying

$$
\begin{equation*}
\nabla_{a} u_{b c}+\nabla_{b} u_{a c}=2 p_{c} g_{a b}-p_{a} g_{b c}-p_{b} g_{a c} \tag{0.2}
\end{equation*}
$$

Afterward, Yamaguchi [4] has defined a product conformal Killing tensor in a locally product Riemannian manifold and obtained some results. And Chen [1] has defined a F-conformal Killing tensor in Kählerian space and generalized some results.

In this paper we shall define a $C$-conformal Killing tensor in a cosymplectic manifold and we obtain analogues results to a conformal Killing tensor.

## 1. Preliminaries.

Let $M$ be a ( $2 n+1$ )-dimensional differentiable manifold with an almost contact metric structure ( $\phi_{b}{ }^{a}, \xi^{a}, \eta_{b}, g_{a b}$ ) satisfying

$$
\begin{gather*}
\phi_{c}^{a} \phi_{b}^{c}=-\delta_{b}^{a}+\xi^{a} \eta_{b}  \tag{1.1}\\
\phi_{b}^{a} \xi^{b}=0, \quad \phi_{b}^{a} \eta_{a}=0, \quad \xi^{a} \eta_{a}=1 \\
g_{a} \xi^{b}=\eta_{a}  \tag{1.3}\\
g_{c d} \phi_{a}^{c} \phi_{b}^{d}=g_{a b}-\eta_{a} \eta_{b} \tag{1.4}
\end{gather*}
$$

If the almost contact structure is normal, then the manifold $M$ is called a normal contact manifold or a Sasakian manifold. An almost contact metric structure is
said to be cosymplectic if it is normal and 2-form $\phi_{a b}=\phi_{a}{ }^{c} g_{c b}$ and 1-form $\eta_{b}$ are both closed. It is known that the cosymplectic is characterized by

$$
\begin{equation*}
\nabla_{c} \phi_{b}^{a}=0, \quad \nabla_{c} \eta_{b}=0 . \tag{1.5}
\end{equation*}
$$

Let $R_{a b c d}$ and $R_{a b}$ be the curvature tensor and the Ricci tensor respectively. In a cosymplectic manifold, by virtue of (1.5) we have

$$
\begin{equation*}
R_{a b c d} \eta^{d}=0, \quad R_{a d} \eta_{i}^{d}=0 \tag{1.6}
\end{equation*}
$$

If we put

$$
F_{a b}=\frac{1}{2} R_{a b c c} \phi^{c d}
$$

then making use of the Ricci identity for $\phi_{c d}$, we have

$$
R_{a b c}{ }^{t} \phi_{t d}+R_{a b d}{ }^{t} \phi_{c t}=0
$$

Contracting $g^{b c}$ to the last equation, we obtain

$$
\begin{equation*}
R_{a}^{t} \phi_{t b}=F_{a b} \tag{1.7}
\end{equation*}
$$

from which

$$
\begin{equation*}
F_{a}{ }^{t} \phi_{t b}=-R_{a b} \tag{1.8}
\end{equation*}
$$

## 2. C-conformal Killing tensor.

In this section we shall define a $C$-conformal Killing tensor in a cosymplectic manifold $M$. For a skew symmetric tensor field $u_{c d}$ if there exists a vector field $p^{a}$ such that

$$
\begin{align*}
\nabla_{b} u_{c d}+\nabla_{c} u_{b d} & =2 p_{d} g_{b c}-p_{b} g_{c d}-p_{c} g_{b d}-2 p_{d} \eta_{b} \eta_{c}+p_{b} \eta_{c} \eta_{d}  \tag{2.1}\\
& +p_{c} \eta_{b} \eta_{d}+3\left(\bar{p}_{b} \phi_{c d}+\bar{p}_{c} \phi_{b d}\right)
\end{align*}
$$

where we put $\bar{p}_{c}=\phi_{c}{ }^{t} p_{f}$, then we call $u_{c d}$ a $C$-conformal Killing tensor and $p^{a}$ the associated vector of $u_{c d}$. The associated vector of $u_{c d}$ is given by

$$
\begin{equation*}
p_{d}=\frac{\nabla^{c} u_{c d}}{2(n+1)}+\frac{\left(\nabla^{b} u_{b c}\right) \eta^{c} \eta_{d}}{2 n(n+1)} \tag{2.2}
\end{equation*}
$$

and if $p_{d}$ vanishes identically then $u_{c d}$ is a Killing tensor.
By the definition and (1.4), we have

$$
\begin{gather*}
\bar{p}_{c} p^{c}=0, \quad \bar{p}_{c} \eta^{c}=0  \tag{2.3}\\
p_{c} p^{c}-\bar{p}_{c} \bar{p}^{c}=\lambda^{2}
\end{gather*}
$$

where $\lambda=p_{c} \eta^{c}$ is a scalar function.

Since we obtain the following formula for any skew symmetric tensor $T_{a b}$,

$$
\nabla^{a} \nabla^{b} T_{a b}=0,
$$

from (2.2) we get

$$
\begin{equation*}
\left(\nabla_{b} p_{c}\right) \eta^{b} \eta^{c}=(n+1) \nabla^{c} p_{c}=0 . \tag{2.5}
\end{equation*}
$$

Next, we shall seek for differential equations of second order satisfied by $u_{c d^{*}}$ If we put

$$
\begin{equation*}
G_{a b}=g_{a b}-\eta_{a} \eta_{b}, \tag{2.6}
\end{equation*}
$$

then the equation (2.1) becomes

$$
\begin{equation*}
\nabla_{b} u_{c d}+\nabla_{c} u_{b d}=2 p_{d} G_{b c}-p_{b} G_{c d}-p_{c} G_{b d}+3\left(\bar{p}_{b} \phi_{c d}+\bar{p}_{c} \phi_{b d}\right) \tag{2.7}
\end{equation*}
$$

Operating $\nabla_{a}$ to the last equation, we get

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{a} \nabla_{c} u_{b d}=2 p_{a d} G_{b c}-p_{a b} G_{c d}-p_{a c} G_{b d}+3\left(\bar{p}_{a b} \phi_{c d}+\bar{p}_{a c} \phi_{b d}\right) \tag{2.8}
\end{equation*}
$$

where we put

$$
p_{a b}=\nabla_{a} p_{b}, \quad \bar{p}_{a b}=\nabla_{a} \bar{p}_{b}=p_{a c} \phi_{b}^{c} .
$$

Changing the indices $a, b, c$ cyclically, adding these two equations and subtracting (2.8), we obtain

$$
\begin{align*}
& 2 \nabla_{a} \nabla_{b} u_{c d}-2 R_{c b a}{ }^{t} u_{d t}-R_{b a d}{ }^{t} u_{c t}-R_{a c d}{ }^{t} u_{b t}-R_{b c d}{ }^{t} u_{a t}  \tag{2.9}\\
& \quad=2\left(p_{a d} G_{b c}+p_{b d} G_{c a}-p_{c d} G_{a b}\right)-\left(p_{a b}+p_{b a}\right) G_{d c}-\left(p_{a c}-p_{c a}\right) G_{d b} \\
& \quad-\left(p_{b c}-p_{c b}\right) G_{d a}+3\left(\bar{p}_{a b}+\bar{p}_{b a}\right) \phi_{c d}+3\left(\bar{p}_{a c}-\bar{p}_{c a}\right) \phi_{b d}+3\left(\bar{p}_{b c}-\bar{p}_{c b}\right) \phi_{a d}
\end{align*}
$$

Again, changing the indices $b, c, d$ cyclically and adding these three equations, we have

$$
\begin{align*}
& 2 \nabla_{a} \nabla_{b} u_{c d}-R_{c b a}{ }^{t} u_{d t}-R_{b d a}{ }^{t} u_{c t}-R_{d c a}{ }^{t} u_{b t}  \tag{2.10}\\
& =\left(p_{b d}-p_{d b}\right) G_{c a}+\left(p_{c b}-p_{b c}\right) G_{a d}+\left(p_{c d}-p_{d c}\right) G_{a b}+\left(p_{d b}-p_{b d}\right) G_{b a} \\
& -2 p_{a c} G_{b d}+2 p_{a d} G_{b c}+\left(\bar{p}_{b c}-\bar{p}_{c b}\right) \phi_{a d}+\left(\bar{p}_{c d}-\bar{p}_{d c}\right) \phi_{a b}+\left(\bar{p}_{d b}-\bar{p}_{b d}\right) \phi_{a c} \\
& \quad+2\left(\bar{p}_{d a}-\bar{p}_{a d}\right) \phi_{b c}+2\left(\bar{p}_{a c}-\bar{p}_{c a}\right) \phi_{b d}+2\left(\bar{p}_{a b}+\bar{p}_{b a}\right) \phi_{c d},
\end{align*}
$$

where we have used the following equation

$$
\begin{aligned}
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{a} \nabla_{c} u_{d b}+\nabla_{a} \nabla_{d} u_{b c} & =3\left(\nabla_{a} \nabla_{b} u_{c d}+p_{a c} G_{b d}-p_{a d} G_{b c}+\bar{p}_{a d} \phi_{b d}\right. \\
& \left.-\bar{p}_{a c} \phi_{b d}+2 \bar{p}_{a d} \phi_{d c}\right) .
\end{aligned}
$$

## 3. Integral formula.

In this section we shall prove some integral formula about a tensor field. Let
$u_{c d}$ be a $C$-conformal Killing tensor. Then we obtain

$$
\begin{align*}
& \nabla^{a} \nabla_{a} u_{c d}-R_{c}^{a} u_{d a}-R_{c d}^{a b} u_{a b}  \tag{3.1}\\
& =-(2 n-3) p_{c d}-p_{d c}-3 \bar{p}_{a}^{a} \phi_{c d}+2 p_{a d} \eta^{c} \eta_{c}+\left(p_{c a}-p_{a c}\right) \eta^{a} \eta_{d} \\
& -3\left(\bar{p}_{a c}-\bar{p}_{c a}\right) \phi_{d}^{a}
\end{align*}
$$

by transvecting (2.9) with $g^{a b}$.
Now, we shall show that a skew symmetric $\operatorname{ten}_{\mathrm{s}}$ or $u_{c d}$ satisfying (3.1) is a $C$-conformal Killing tensor provided that $M$ is compact.

If we put

$$
\begin{equation*}
U_{b c d}=\nabla_{b} u_{c d}+\nabla_{c} u_{b d}-2 p_{d} G_{b c}+p_{b} G_{d c}+p_{c} G_{d b}-3\left(\bar{p}_{b} \phi_{c d}+\bar{p}_{c} \phi_{b d}\right) \tag{3.2}
\end{equation*}
$$

for a skew symmetric tensor $u_{c d}$, where $p_{c}$ and $\bar{p}_{b}$ are given by

$$
\begin{aligned}
& p_{c}=\frac{\nabla^{b} u_{b c}}{2(n+1)}+\frac{\left(\nabla^{a} u_{a b}\right) \eta^{b} \eta_{c}}{2 n(n+1)} \\
& \bar{p}_{b}=\frac{1}{6(n+1)}-\left(\nabla_{b} u_{c d}+\nabla_{c} u_{b d}\right) \phi^{c d}
\end{aligned}
$$

Simple computations give us the following

$$
\begin{gather*}
U_{b c d} U^{b c d}=2 U_{b c d} \nabla^{b} u^{c d}  \tag{3.3}\\
u^{c d} U_{b c d}=u^{c d}\left(\nabla^{a} \nabla_{a} u_{c d}-R_{c}^{a} u_{d a}-R_{c d}^{a} u_{a b}+(2 n-3) p_{c d}+{ }_{d c}-2 p_{a d} \eta^{a} \eta_{c}\right.  \tag{3.4}\\
\left.-\left(p_{c a}-p_{a c}\right) \eta^{a} \eta_{d}-3 \bar{p}_{a}^{a} \phi_{c d}+3\left(\bar{p}_{a c}-\bar{p}_{c a}\right) \phi_{d}{ }^{a}\right) .
\end{gather*}
$$

Substituting (3.3) and (3.4) into

$$
\nabla^{b}\left(U_{b c d} u^{c d}\right)=\nabla^{b} U_{b c d} u^{c d}+U_{b c d} \nabla^{b} u^{c d}
$$

Thus we have
THEOREM 3.1. In a compact cosymplectic manifold $M$, the following integral formula is valid for any skew symmetric tensor $u_{c d}$

$$
\begin{aligned}
& \int_{M}\left[u ^ { c d } \left(\nabla^{a} \nabla_{a} u_{c d}-R_{c}^{a} u_{d a}-R_{c d}^{a}{ }_{c d}^{b}+(2 n-3) p_{c d}+p_{d c}-2 p_{a d} \eta^{a} \eta_{c}\right.\right. \\
& \left.-\left(p_{c a}-p_{a c}\right) \eta^{a} \eta_{d}-3 \bar{p}_{a}^{a} \phi_{c d}+3\left(\bar{p}_{a c}-\bar{p}_{c a}\right) \phi_{d}^{a}+\frac{1}{2} U_{b c d} U^{b c d}\right] d \sigma=0,
\end{aligned}
$$

where $d \sigma$ means the volume element of $M, p_{c d}$ and $\bar{p}_{c d}$ are given by

$$
p_{c d}=\frac{\nabla_{c} \nabla^{b} u_{b d}}{2(n+1)}+\frac{\left(\nabla_{c} \nabla^{b} u_{b a}\right) \eta^{a} \eta_{d}}{2 n(n+1)}
$$

$$
\bar{p}_{c d}=\frac{1}{6(n+1)}\left(\nabla_{c} \nabla_{d} u_{a b}+\nabla_{c} \nabla_{a} u_{d b}\right) \phi^{a b}
$$

Thus we have
ThEOREM 3.2. In a compact cosymplectic manifold $M$, a necessary and sufficient condition for any skew symmetric $u_{c d}$ to be a C-conformal Killing tensor is (3.1).
4. A manifold of constant $C$-holomorphic sectional curvature.

It has been shown that in a Sasakian manifold or a cosymplectic manifold of constant $C$-holomorphic sectional curvature $k$, the curvature tensor $R_{a b c d}$ has the form

$$
\begin{align*}
R_{a b c d} & =a\left(g_{a d} g_{b c}-g_{a c} g_{b d}\right)+b\left(\phi_{a d} \phi_{b c}-\phi_{a c} \phi_{b d}-2 \phi_{a b} \phi_{c d}\right.  \tag{4.1}\\
& \left.-g_{a d} \eta_{b} \eta_{c}-g_{b c} \eta_{a} \eta_{d}+g_{a c} \eta_{b} \eta_{d}+g_{b d} \eta_{a} \eta_{c}\right)
\end{align*}
$$

where $a=(k+3) / 4$ and $b=(k-1) / 4$ in Sasakian manifold, $a=b=k / 4$ in cosymplectic manifold. This formula was shown for the Sasakian case by Ogiue and for the cosymplectic case by Blair.

Now we shall show the following
THEOREM 4.1. In a cosymplectic manifold of constant C-holomorphic sectional curvature, the covariant derivative $\nabla_{c} v_{d}$ of any Killing vector $v_{d}$ is a C-conformal Killing tensor.

PROOF. Let $v_{d}$ be a Killing vector. Then as is well known we have

$$
\begin{equation*}
\nabla_{b} \nabla_{c} v_{d}+R_{a b c d} v^{a}=0 . \tag{4.2}
\end{equation*}
$$

Substituting (3.1) into the last equation, we get

$$
\begin{align*}
\nabla_{b} \nabla_{c} v_{d}= & -c\left(v_{d} g_{b c}-v_{c} g_{b d}-\bar{v}_{d} \phi_{b c}-\bar{v}_{c} \phi_{b d}+2 \bar{v}_{b} \phi_{c d}\right.  \tag{4.3}\\
& \left.-v_{d} \eta_{b} \eta_{c}-\lambda g_{b c} \eta_{d}+v_{c} \eta_{b} \eta_{d}+\lambda g_{b d} \eta_{c}\right),
\end{align*}
$$

where $\bar{v}_{d}=\phi_{d}{ }^{a} v_{a}$ and $\lambda=v^{a} \eta_{a}$.
If we put

$$
p_{d}=-c\left(v_{d}-\lambda \eta_{d}\right), \quad \bar{p}_{d}=\phi_{d}{ }^{a} p_{a}=-c \bar{v}_{d},
$$

then we obtain

$$
\begin{aligned}
\nabla_{b} \nabla_{c} v_{d}=p_{d} g_{b d} & -p_{c} g_{b d}-\bar{p}_{c} \phi_{b d}-\bar{p}_{b} \phi_{c d}+2 \bar{p}_{b} \phi_{c d} \\
& -p_{d} \eta_{b} \eta_{c}-p_{c} \eta_{b} \eta_{d .} .
\end{aligned}
$$

Changing the indices $b$ and $c$, adding these two equations, we have

$$
\begin{aligned}
\nabla_{c} \nabla_{b} v_{d}+\nabla_{b} \nabla_{c} v_{d} & =\left(2 p_{d} g_{b c}-p_{b} g_{c d}-p_{c} g_{b d}\right)-\left(2 p_{d} \eta_{b} \eta_{c}\right. \\
& -p_{b} \eta_{c} \eta_{d}-p_{c} \eta_{b} \eta_{d}+3\left(\bar{p}_{b} \phi_{c d}+\bar{p}_{c} \phi_{b d}\right)
\end{aligned}
$$

This equation shows that $\nabla_{c} v_{d}$ is a $C$-conformal Killing tensor.
We know the converse of Theorem 3.1 is valid as follows.
THEOREM 4.2. In a cosymplectic manifold $M$, if Lie algebra of all Killing vectors $v_{d}$ is transitive and the covariant derivative $\nabla_{c} v_{d}$ of any Killing vector $v_{d}$ is a C-conformal Killing tensor, then $M$ is a manifold of constant $C$-holomorphic: sectional curvature.

PROOF. Taking $u_{c d}=\nabla_{c} u_{d}$ in (2.7) and by making use of (3.2), we have

$$
\begin{align*}
& -\left(R_{a b c d}+R_{a c b d}\right) u^{a}  \tag{4.4}\\
& =\left(2 p_{d} G_{b c}-p_{b} G_{c d}-p_{c} G_{b d}\right)+3\left(p_{b} \phi_{c d}+p_{c} \phi_{b d}\right)
\end{align*}
$$

Transvecting (4.4) with $g^{b c}$ and $\phi^{c d}$ respectively, we have

$$
\begin{align*}
& -R_{a d} u^{a}=2(n+1) p_{d}  \tag{4.5}\\
& -F_{a b} u^{a}=2(n+1) \bar{p}_{b} \tag{4.6}
\end{align*}
$$

by virtue of (1.5).
Substituting (4.5) and (4.6) into (4.4), we have

$$
\begin{aligned}
\left(R_{a b c d}+R_{a c b d}\right) u^{a} & =\frac{1}{2(n+1)}\left(2 R_{a d} G_{b c}-R_{a b} G_{c d}-R_{a c} G_{b d}\right. \\
& \left.+3\left(F_{a b} \phi_{c d}+F_{a c} \phi_{b d}\right) u^{a}\right)
\end{aligned}
$$

Since the last equation holds for any vector $u^{a}$, we obtain

$$
\begin{align*}
R_{a b c d}+R_{a c b d} & =\frac{1}{2(n+1)}\left(2 R_{a d} G_{b c}-R_{a b} G_{c d}-R_{a c} G_{b d}\right.  \tag{4.7}\\
& \left.+3\left(F_{a b} \phi_{c d}+F_{a c} \phi_{b d}\right)\right)
\end{align*}
$$

Transvecting (4.7) with $g^{a d}$ and taking account of (1.8), we have

$$
\begin{equation*}
R_{b c}=\frac{1}{2 n} R G_{b c} \tag{4.8}
\end{equation*}
$$

Substituting the last equation into (4.7), we have

$$
\begin{align*}
R_{a b c d} & +R_{a c b d}=\frac{R}{2 n(n+1)}\left(2 G_{a d} G_{b c}-G_{a b} G_{c d}-G_{a \varepsilon} G_{b d}\right.  \tag{4.9}\\
& \left.+3\left(\phi_{a b} \phi_{c d}+\phi_{a c} \phi_{b d}\right)\right)
\end{align*}
$$

lnterchanging indices $b, c, d$ in (4.9) as $b \rightarrow c \rightarrow d \rightarrow b$ and then substracting what follows from (4.9), we have

$$
R_{a c b d}=\frac{R}{2 n(n+1)}\left(G_{a d} G_{b c}-G_{a b} G_{c d}+\phi_{a b} \phi_{c d}-\phi_{a c} \phi_{b d}-2 \phi_{a c} \phi_{b d}\right)
$$

taking account of $G_{b c}=g_{b c}-\eta_{b} \eta_{c}$, the last equation becomes

$$
\begin{align*}
R_{a c b d} & =\frac{R}{2 n(n+1)}\left(g_{a d} g_{b c}-g_{a b} g_{c d}+\phi_{a b} \phi_{c d}-\phi_{a c} \phi_{b d}-2 \phi_{a c} \phi_{b d}\right.  \tag{4.10}\\
& \left.-g_{a d} \eta_{b} \eta_{c}-g_{b c} \eta_{a} \eta_{d}+g_{a b} \eta_{c} \eta_{d}+g_{c d} \eta_{a} \eta_{b}\right)
\end{align*}
$$

Thus the proof is complete.
Let us assume that $c \neq 0$. If we put

$$
\begin{equation*}
q_{c d}=u_{c d}+\frac{1}{c} \nabla_{c} p_{d} \tag{4.11}
\end{equation*}
$$

then by virtue of (4.3) and (2.1), it follows that

$$
\nabla_{b} q_{c d}+\nabla_{c} q_{b d}=0
$$

which means $q_{c d}$ is a Killing tensor. Consequently, a $C$-conformal tensor $u_{c d}$ is decomposed in the form

$$
\begin{equation*}
u_{c d}=q_{c d}+p_{c d} \tag{4.12}
\end{equation*}
$$

where $q_{c d}$ is a Killing tensor and $p_{c d}=-\frac{1}{a} \nabla_{c} p_{d}$ is a closed $C$-conformal Killing tensor. Thus we have

THEOREM 4.3. In a cosymplectic manifold of constant C-holomorphic sectional curvature $a=R / 2 n(n+1) \neq 0$, a $C$-conformal Killing tensor $u_{c d}$ is decomposed in the form

$$
u_{c d}=q_{c d}+p_{c d}
$$

where $q_{c d}$ is a Killing tensor and $p_{c d}$ is a closed C-conformal Killing tensor. In this case $p_{c d}$ is the form

$$
p_{c d}=-\frac{1}{a} \nabla_{c} p_{d}
$$

where $p_{d}$ is the associated vector of $u_{c d}$. Conversely if $q_{c d}$ is a Killing tensor and $p_{c}$ is a Killing vector, then $u_{c d}$ given by (4.12) is a C-conformal Killing tensor.

Pusan University
Pusan, Korea

## BIBLIOGRAPHY

[1] Chen, C.H., On a Riemannian manifold admitting Killing vectors whose covariant
derivatives are conformal Killing tensors, Ködai Math. Sem. Rep. 23(1971) 168-171.
[2] S.Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. Journ., 21(1969), 56-64.
[3] S. Yamaguchi, On Kählerian spaces admitting a certain skew symmetric tensor field.
[4] S. Yamaguchi, On a Product-conformal Killing tensor in locally product Riemannian spaces, Tensor, N.S. Vol. 21(1970) 75-82.
[5] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, (1965).

