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ON THE NON-RIEMANNIAN SPACES
By OM. P. Singh

§1. Introduction.

In an n-dimensional non-Riemannian space A, the theory of normal tensors
based on the system of normal coordinates introduced by O. Veblen [1]¥, have
been developed by O. Veblen and T.Y. Thomas [2]. In the present paper,
considering the space A, embodied with a field of normal tensors A;Q' we shall
establish some theorems on the space and shall deal with the affine motion in an
A,. We shall also determine the necessary and sufficient conditions for the equa-
tions of the paths admitting homogeneous LFI and QFI, and for the existence of
the infinitesimal projective collineation in the space A4,.

The symbolism employed in the present paper is essentially the same as these
used in [1], [2] and by Eisenhart [4].

§2. The field of normal tensors Ajki and the space 4 .

Considering the symmetric functions /” ;.k and C;.k in the space A, as the co
nnection coefficients in the coordinates x's and its normal coordinates y's respec-
tively, the normal tensors A;'ﬂ....[ are given by

i ic

2.1 At = (,,},’—’;y)u

where the lower suffix zero indicates the value of the function evaluated at the
point P as origin of the normal coiirdinates ¥’s. I'rom (2.1), it is quite obvious
that the components of the normal tensors A:;.Hlm,_ are symmelric in 7 and &, and
in last 7 indices. Veblen and Thomas have already shown that any point in the
space can be chosen as origin, so the components of these tensors are defined at
each point throughout the space and in every coordinate system.

Now for the sake of convenience in our very purpose of present discussion,

1). Numbers in brackets refer to the references at the end of the paper.
2). Eisenhart [4], pp.68—74.



44 OM. P. Singh

we take the 4th order mixed normal tensors Aj.k, in consideration and assume that
each point of the space A, is defined by the tensors Aj.ki_. So that the space A,

is now embodied with a field of normal tensors A;k[. This idea has motivated the
author to discuss the various problems in this characteristic space.
The components of the normal tensors A:.H in terms of the connection coeffi-

cient I" ;} are defined by the expression

i

2 ar. i
i & i t B iR
2.2 A= =T~y =3 s
where
) art , .
i =_]_k jk f .y £ =5
2.3) Fj,u_ 3 P( 3x£ -Frlgrjl _F:‘rrkl)

In above relation P before an expression indicates the sum of terms obtained
by permuting the subscripts cyclically.

We also notice that the tensors Ai.k‘. satisfy the following identity ([4], p. 70)
2.4 Ayt Ay o+ A, =0,

The Curvature tensor Bj‘.u of the space 4, is given by

o arj., - o TR L L
{2.5) B,-H—? Py AT ke kA

Since ijz' as defined by (2.3) is symmeiric in % and I, so it follows from
{2.2) and (2.5) that

i i i
(2.6) B =4 = Ay
Now in accordance with the definition of flat spaces, if the space A4, be flat
Applying this fact to the identity

5 i ] i
one, i.e. BJ.M—O. then we have Aj_,k—»Am.

(2.4), we get Ai. =0. Hence we have the
JRl

THEOREM 1. If a non-Riemannian space A, be a flat space, i.e. BZM:O, there

does not exist a field of normal tensors A;: in an A, and conversely if the space
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A, embodies a field of normal tersors A;.M, the space A, is wnecessarily a wnon-flat

space,

Further we remark at this point that a flat space is necessarily a Riemannian
space ([4], p.81), which asserts that the normal covrdinates of a flat A, are now
the particular class of Riemannian cobrdinates in a general Riemannian space.
Hence it follows:

THEOREM 2. There does not exist a field of mormal tensors A:.M in a general

Riemannian space V.

§8. A non-Riemannian spaece of recurrent curvature and the affine motion.

Due to Y.C. Wong [3], an #-dimensional analytic non-Riemannian space 4, of
recurrent curvature, for a symmetric affine connection I” :',.k, has been defined by

the characteristic relation

i i
3.1 Bjk,;m:K B e (K, 70),
where a semi-colon followed by an index denotes the covariant differentiation
with respect to #’s. Such a space 4, is called an AK :—spaoe.

On the other hand, let us consider a field of normal tensors A:-.M, characterized

by a similar type of relation

1
(3.2 Ao

i
=K Aon
where K, is a non-zero covariant vector. We shall call such a field, a field of

recurrent normal tensors.
Differentiating the relation (2.6) covariantly with respect to 2", we obtain
i i

i
(3.3) iklim Aﬂk;m "Ajkl;m'

If we introduce the relation (3.2) in (3.3), then, on applying the relation (2.6)
in the so obtained result, we can get at once the relation (3.1). Consequently,
we have the

THEOREM 3. Wher a non-Riemannian space A, embodies a field of normal tensors
Aj‘ki' the space A, is necessarily a space of recurrenl curvalure if the field po-
ssesses the recurrence property.

Further, we have an useful relation ([4], p.72)

i i A

Ajkl;m: kim

1
(Jhtym?
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where Aisym=GC/ 5™y

In consequence of this, relation (3.3) is changed into the form

i i i i i
Botim = Aitem™ Ajtnr (Because €, =C ).
We now remember that a space A, with the property that the curvature tensor

of A, are covariant constant, i.e., B;H, »=0, is said to be symmetric in the

sense of Cartan. In such a case, from above relation, we have the result A;.!M

=A

;’k[m' which shows that the tensor A;.,km is symmetric in the middle two indi-

ces [ and & But, it has already been pointed out that a normal tensor A;k‘, oy I8

symmetric in first two indices 7 and £ and in last # indices, so, in the case when

A, is symmetric, the tensor A;k!m is throughout symmetric in its all lower indi-

ces. However, we have the following well known identity ([4], p.70) satisfied
i

by the tensors A}.Hm

i i i i o ¥ i
Ajktm+‘AjIm}t+ Ajmkl-l_ﬂkz‘ijAkmﬂ +‘Almjk =0.

In our present case, from the above facts and this identity, we conclude that

i
Ajﬂm=o. Hence, we can state the

THEOREM 4. When a non-Riemannian space A, is a symmelric space, there does
not exist a field of normal tensors A;Mm inan A, and conversely, if there does
not exist a field of normal tensors A;Mm in an A, the space A is necessarily a
symmelric space.

COROLLARY 1. If an A, embodies a field of normal tensors Aiwm the space A,
be a non-symmetric space.

Next, in the space 4, let us consider an infinitesimal transformation.

(3.4) F =1+,
where Ei is a contravariant vector, and &7 is an infinitesimal constant,
Then we have a deformed space with an affine connection

_; def - i P

F:.k El*’jk+ (£F;k)52‘, where [ ;k is the affine connection of the deformed space.

In case of the above transformation, if the original space and the deformed
space have the same connection, the transformation (3.4) is called an affine
motion of the space A, In order that it be the case, it is necessary and sufficient
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that we have
i
(3.5) £, =0%,

where the notation £ denotes the operator of the so called Lie differentiation
process.

The Lie derivative of the curvature tensor Bj.k[ is given by £B;k,=(£!" ;[)_k
—(£1‘j§)__!. so, due to the cendition (3.5), under an affine motion we get nece-

ssarily
i
(3.6) £BJ.H:O.
Now, operating £ on both the sides of (2.6) and applying the condition (3.6) in
the result, we obtain
i i
3.7 £ =i,
Thus, it concludes the

THEOREM 5. When a non-Riemannian space A, embodies a field of normal tensors
Aj.k,. in order that the transformation (3.4) be an ajffine motion of A,, it is nece
ssary and sufficient that we have

i i
L4, =L4,,,

Further we see that for any general tensor T;kh, the following relation? holds
good
; i iy - i
(3.8) (ijk:f - (‘ijkh);l =(&£r af)Tjkh = ("'e[r?f)Takk
2 i 1]
—&r k!)Tjah_(£F§£)Tjka'
In the present case, emploving this formula for the curvature tensor Bj.k;, we get
from (3.5) and (3.6)
i
(3' 9) £(Bjk[:m):0‘
Intreducing the relation (3.3) in (3.9) and using (3.2) and (3.7), we obtain
after some simple calculation

; i
(A_,!k—Ajkl)£Km:0'
Since our space is not flat one, i.e. B;H:Afﬂk—Aj.k_,¢0. therefore £K  =0.

Now, if we again use the relation (3.8) for the tensor A;H and apply the relat-

3). See Yano [3], relation (2.21), page 8.
4). Yano [5], page 16.
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ion (3.2) and the condition £K, =0 in the result, then,under an affine motion,
we get a requisite condition (£A§M)_.m-K (£A i )+ Hence, we have the
THEOREM 6. When an AK ;~space embodies a field of recurremt normal iten-
s07's Ai.k], in order that the field may admit an affine motion of the form (3.4),
it is necessary and sufficient that (£A ;kl (£A H)

§4. The equations of the paths admitfing independent homogeneous linear
first integrals and quadratie first integrals.

In an n-dimensional space A4, let us consider the equations of the paths

dzx dx dx _
4.1) e +F}k e =0.

If each integral of the equations of the above paths satisfies the condition

di"  dx”* 5" _ . o
Gy s, g5 — s T3 =C; (C: a constant),

the equations (4.1) are said to admit a homogeneous first integral of the mth
degree. But for the sake of brevity, here on one hand we shall consider the
integral of the first degree, that is an independent homogeneous linear first
integral (LFI)

(4.2) a; g" =C;: (C;: a constant).

If the equations of the paths (4.1) admit a homogeneous LFI (4.2), it is nece-
ssary that
(4.3) a;.; -‘raj;'- =

Differentiating this relation covariantly with respect to xk, we have
4.4 &, ity 5=0
Now, we consider that T o ; and t ; are the components of a tensor in the

coordinate system z' " and its normal coordinates y' respectively, then the general
relation ([4], p. 74) connecting covariant derivatives of the tensor T;i; and

its extensions of the second order can be given as follows;

1,-
fi-d,  _ pbyeed, dyerlymfilpyyeed, Lip X Zyeeed, h
49 Tf AL T; d b Z’ T = gy~ Z T R U P JAJ.H'

where T i wjop ATE the second order extensions of the tensor Tl dcfmed by
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_ e
(4.6) pEta (et ),
g Rl aykayf 0
The colon followed by the indices denotes the extension process of the tensors of
the same order as the sum of the given number of indices following a colon, and

the lower suffix zero indicates the value of the function evaluated at the point
P, as origin. Since any point can be chosen as Py so the relation (4.5) holds

good for any point throughout the space.
Similarly if we assume that a; and @; are the components of a tensor of order

one in #' coordinates and its normal coordinates yi respectively, then, with the
help of (4.5) and (4.6) the covariant derivatives of @; in terms of the second order

extension can be given by

[
(4.7) =% jk_ar‘iijk’
2%’
where =) .
a'z:]k ( Eyiayk )U

Now, adding the relation (4.4) with the first of the following.

ak:ij+ai:kj:0. a}.;ki.wk;ﬁ:o
and subtracting the other, then, on making the use of the relation (4.7) and the
identity (2.4), we shall get at once

(4.8) Gk = _ah(A;lki+A:ji)

Making the cyclic change in the indices 7, j, 2, of the relation (4.8) and adding
the so obtained two relations with that of (4.8), we get at last

(4.9) ai:jk+aj:ki“rak:ij:0'
where we have used the identity (2.4) again. Hence we have the

THEOREM 7. When a non-Riemannian space A, embodies a field of normal tensors

A;:H, in order that the equations of the patks (4.1) of the space A, admil homog-
encous LFI (4.2), it is necessary and sufficient that the identily (4.9) necessarily

holds good.

Next, we consider the integral of the second degree, that is an independent
homogeneous quadratic first integral (QFI)

di d¥ _ . g
(4.10) R =C,: (C,: a constant).

If the equations of the paths (4.1) admit a homogeneous QFl (4.10), it is
necessary that
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(4.11) @3 BT ;=0

Now, for the sufficiency that the equations of the paths (4.1) admit a homog-
eneous QFI (4.10), we determine a concrete condition. For this purpose, first,
differentiating (4.11) covariantly, we obtain

(4.12) @iy iy T 3=0
Next, by making the use of the formula (4.5), one may easily have the
B h
(4.13) @b = g~ Oy — e
Similarly, for the other terms in (4.12), consecutive expressions are obtained as
. k P
419 @it =it~ By — O yap
B i
(4.15) aﬁ;ﬂ:aki:ﬂ_ak:'Akj[—akkAij!‘

Here we notice that the second extension a;;,,, of the tensor g;; is symmetic in

i and 7, and in % and /. Also the normal tensor A?H is symmetric in its first two
lower indices. So adding (4.13), (4.14), (4.15) and using (4.12), we can get
with ease
i B h

(4.16) ot it G =2y Ay Oy Ay @A)
Making the cyclic change of the indices £, 7,k and ! in (4.16), three other
expressions will be obtained successively. Adding these three with that of (4.16)
and using the identity (2.4), and on arranging the terms, we get finally

(4.17) (@510 i) (@i ) (@44 ) =0
From which, obviously we see that, if a;;,,=—ay. ;. the relation (4.17) is id-
entically satisfied. Hence we have the

THEOREM 8. When a non-Riemannian space A, embodies a field of normal lensors

i
Ay
eous QFI (4.10), it is necessary and sufficient that Giip ™= — Oy ijp that is to say,

. in order thal the equations of the paths (4.1) of the space A, admit homogen-

the second extension a;;.y of the tensor ay; be antisymmetric in ils pair of indices ij
and kl.

§5. Conditions for the existence of infinitesimal collincations in an
affinely connected space.

If some point transformations transform the points of an affinely connected
manifold into points of the manifold such that the paths are transformed into
paths. The transformations are called collineations.
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Let us consider an infinitesimal point transformation
G.1) =2 +E o,

where $£ are the function of #'s and d7 is an infinitesimal. If (5.1) be the col-
lineation in an A,, the necessary conditions for this are

(5:2) §y=E" Bt 0j0+0[9,
and
h h
G £5=¢" By

When a set of functions Ei are a solution of (5.2), where ¢;70, the collineation
preserves the projective properties and is called an infinitesimal projective col-
lineation. On the other hand, when the set of functions &' are a solution of (5.3)
and the collineation (5.1) preserves the affine properties of the space, the col-
lineation (5.1) is called an infinitesimal affine collineation in the space 4,

The second order covariant derivative of a vector 51- and its second extension
may be connected by the relation

i i
C) E=EE Ay
Introducing this relation on the left of (5.2) and taking help of (2.6), the
relation (5.2) may be rewritten in the form
B B 2k, ok &
Interchanging the indices 7 and 7 in this relations, and adding the resulting equa-

tion with (5.6), we get

b oak o aks ok B ke b gk
€76 TE (A Ay ) = (dy— 4

k h h o
bt A= A 200,407 ),

or ch . 2k 2 i k k A Aoy,
6.1y Elt 6= Wy Ay A Ay AL~ A2 0407 0.

Since the tensors A;.k are symmetric in the first two lower indices 7 and 7, so
because of the condition £;=¢",, from (5.7) we shall obtain
h Bk
(5.8) E:ijj —£ A;}k'i_(y; ¢f+§9;¢j-
Contracting the relation (5.8) with respect to the indices % and 7, we find that
h
0=—&"4, +(n+ 1o,
From which we conclude that

1 h h
(5.9) e (Because Aj;=A,).
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Hence, we can summarize the above result as follows:

THEOREM 9. A nomr-Riemannian space A, embodied with a field of normal tensors

Aiik, admits an infinitesimal projective collineation if and only if the covarian!
vector ¢, sat tisfies the relalion
ﬁ.__.___‘:"é k
O= i1 s L

Next, we remark that, when Q; is zero, the projective collineation becomes an

fe ft

affine collineation. In such a case, we conclude that £ 4 w—0. Consequently, it

follows

COROLLARY 2. When a non-Riemannian space A, endbodies a field of normal
tensors A::,.k, in order that an infinitesimal projective collineation admitied in A
becomes an irﬁ'fzifes.'ma! afﬁne collineation in the space, it is mecessary and suffi-

cient that we assume § 4" =0

Furthermore, we shall determine a concrete result for the existence of the
infinitesimali collineation in the space A . For this very purpose, first we have to

h_ &
assume §_,=7;.

Introducing this concept in (5.2) and using the relations (2.6) and (5.9), we
find that

& ~k
1?!1_"’- (Au'; Au!) n+]_ [0 ElAzrl+ SIA r[]

Differentiating this relation covariantly with respect to xk, then with the help of
relation Ei-:n?, we obtain

k Lok B
(5.10) iz i = Tlg (Ai!i_Aijt)+5I(Af:j-k u! 8 g s | n+1 [5 ( 1A +¢ Apr )
A+ !
+0; (fk int6 A ;nr 21

Also, we have the follow ing relation connecting the second order covariant de-
rivative 17 2 of a tensor 77 and its second extension T,‘; v
k A

(5.1D Tisie™ T, ;k""" Ama ’?.r i

Introducing the relation (5.11) on the left of (5.10), we have
B0 4 kI [, .k h =, ok A"
Tl’z‘:ﬂaTﬁ'Azjk_W: Az‘jkz"" (A= Ay) 6 (A= Ay, )
+ [5 ( Atr‘[' E[ m' k)+5h (vk Jr[+€1"4}r! Jz)]

n+1
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Now, if we interchange the indices j and # in this relation, then on subtracting
the later equation with the former one, we get al last
Wi‘ A?jk ~ ’?? Az";'k ™ ’7; A?ij”?? Ai“kj N ﬁf&(‘d?lj - A?j!)
_7?; (A~ A +E!(Azf;j;k_A?jI:k) g Lo i~ Ay, P
+f£— 10} O 4, D] (il +E 4, )

]_ [g (nj :rt g.Am’ 1)+0 (n; Akrl+'fJAler ;)I
where we have used 17!.: ,-'r_'ﬁi: 4+ The contraction of k=i in this equation gives us
1" o ¥ il {7 [
JrirA!jk =Ty Ay Ny A 0, Ay
| e owl e £ _or r
l z‘r‘,kArIjTE Arlj-k—"?‘Aﬂk”ElAr!k; i
Next, we put 17 E and use the notation r,‘ A, = ;k in (5.13), we find that

E Aﬂ;—l_E‘Aﬂj k-_g’; rlk+E Ar!k I
which vields the result
!
€ A:!j);k:(gl A:u&).-r

Hence, we have the

(5.13)

THEOREM 10. When a non-Riemannian space A, embodies a field of normal tensors

AZ.,Z, in order that the space A, admits an infinitesimal projective collineation, it
is nmecessary and sufficient that we have

=1
(51“1::5).-:& =(£ A:Ik) o

In concluding this paper, the author is very much indebted to Dr. H.D. Singh
due to his kind help. The author also wishes to express his many thanks to Prof.
K. Takano (Tokyo) for going through the manuscript of this paper and for many
valuable suggestions.

R.B.S. College, Agra (India).
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