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ON MAXIMAL GOLDIE SUBRINGS OF ABSOLUTELY
SEMIPRIME GOLDIE RINGS

By Ralph Stinebrickner

A maximal Goldie subring of a ring is defined to be a maximal element in the
set of all right Goldie subrings properly contained in the ring. Let T be a semi-
prime right Goldie ring which is not prime. In this paper, we study a certain
subset of the set of all maximal Goldie subrings of T. We partition this subset
into equivalence classes and consider properties which members of a particular
class have in common. Some maximal Goldie subrings are semiprime right Goldie
rings. Others are subdirect sums of rings with infinite direct sums of nonzero
right ideals or direct summands of T.

Throughout this paper, Goldie ring will denote right Goldie ring.

In [2], Goldie characterized the classical quotient ring of a semiprime Goldie
ring. Later, Small [4] proved the following proposition: If R is a semiprime
subring of the complete nX#z matrix ring over C where C is a commutative
semiprime Goldie ring, then R is a right and left Goldie ring. Before stating the
related question which we will investigate, we mention some remarks concerning
the existence of maximal Goldie subrings.

Certainly a proper maximal subring of a ring only needs to be Goldie in order
to be a maximal Goldie subring. So maximal Goldie subrings do exist in some
rings. But every Goldie subring is not necessarily contained in a maximal Goldie
subring. For example, let R be the complete direct sum of a denumerably infinite
number of copies of Z, where Z, is the ring of integers modulo 2. The ring R
has no maximal Goldie subrings.

DEFINITION. A ring is absolutely semiprime if it is semiprime but not prime.

Now let T be a ring with ascending chain condition on right annihilators such
that T is not prime. Let K be the set of maximal right annihilators of nonzero
right ideals of 7. We note that K= {r(4;):i €I} where A; is the left annihilator
of an clement of K,r(A) is the right annihilator of A4, and I is an indexing

set.
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Suppose that S is a subring of the ring T. Each of the »(A4)) satisfies one of
the following: 1) r(4)CS. 2) S+7(A)=T where S+r(A) is the subring of T
generated by S and r(4), 3) S§S+r(A)ST. With reference to the above, we
shall at times say that a maximal right annihilator of a nonzero right ideal is of
Type 1,2 or 3 with respect to S. Let & be the set of all maximal Goldie subrings
S of the ring T which possess the property that cach member of K is of the
same Type with respect to S. Then we can partition % into four disjoint subsets:

Subset 1= {SE% : A,NS=0 for some iEl}

Subset 2= {SE€5F : A;NS#0 and r(A4)CS for all i€}

Subset 3= {SEY : A,NS#0 and S+r(A4)=T for all i€l}

Subset 4= {SE¥ : A;NS#0 and SES+r(ADST for all i€l).

In this paper. we prove the following result: If T is absolutely semiprime
Goldie, then each member of Subset 1 is a direct summand of T, each member of
Subset 2 or Subset 3 is semiprime Goldie, and each member of Subset 4 is a
subdirect sum of rings with infinite direct sums of nonzero right ideals.

Herstein proved that a Goldie ring has only a finite number of maximal right
annihilators of nonzero right ideals [3]. The following proposition provides the
same conclusion but has different hypothesis.

PROPOSITION 1. Let T be a semipriine ring wilth a.c.c. on right annihilators.
Then K has only a finite number of distinct elements.

PROOF. Suppose K is infinite. Then by a Lemma in [3], a countable number
of the A; will form an infinite direct sum, A4,+--++A4,+-. Now r(A4,+ A4, ,+),
k=1,2,--- form an ascending chain of right annihilators. Since T has a.c.c. on
right annihilators, there exists a positive integer N such that r(Ay+-)=7(Ay +7
++), j=1,2,~. However, Ay annihilates Ay, j=1,2,+ [3]. Thercfore, (4y)"
=0. But this contradicts the semiprimeness of T'. Hence K is finite.

Since [ is a finite set, we let 7={1,2,+-,n} where # is a positive integer.
The following results which can be found in [3] or are immediate consequences
of lemmas in (3] are included here for easy reference.

PROPOSITION 2. Let T bea ring with a.c.c. on right annihilators. Furthermore,
suppose that T is nol prime.

a) If r(A;) is an element of K, them r(A;) is a prime ideal.

b) If r(A,-);ér(Aj), then A,—Cr(Aj).
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©) A+-+A, is a direct sum.

d) If T is absolutely semiprime, then A,Nr(A;)=0.

e) T is absolutely semiprime if and only if the intersection of the elements of K
is the zero ideal.

) If T is absolutely semiprime, then T has al least two maximal right annihila-
tors of nonzero vight tdeals.

g) A subring inherits a.c.c. on right annihilators from a ring.

h) In any semiprime ring, if U and V are ideals such that UV =0, then VU=0.

1. Quotients Rings.

In this section, we prove that if S is a member of Subset 2 or Subset 3, then S
is semiprime Goldie. Furthermore, we are able to show that a member of Subset
3 has a quotient ring which is isomorphic to the quotient ring of T.

Throughout the remainder of the paper, the terminology of the preceding discuss-
ion will be employed in a manner consistent with its previous description.

THEOREM 3. Let S be a Goldie subring of an absolutely semiprime ring T with
a.c.c. on right annihilators, and suppose each element of K is contained in S. Then
S is semiprime, and S has a quotient ring which is semisimple with descending chain
condition on right ideals.

PROOF. By Proposition 2f, K has at least two distinct elements, »(4,) and
r(A,). Suppose that N is a nilpotent ideal of S. Then N7(A4;) and Nr(A4,) are
nilpotent right ideals of 7, and so N7(4,)=0 and Nr(4,)=0. Since 4; is the
left annihilator of 7(4,;) then NCA;NA,. By Proposition 2¢, it follows that N =0.

We apply Goldie’s Theorem [2] to obtain the conclusion of Theorem 3.

FROPOSITION 4. Let S and T be as in Theorem 3. Then the set of maximal right
annihilators of nonzero right ideals of T coincides with the sel! of maximal right
annthilators of nonzero right ideals of S.

FROOF. Suppose r(A4,) is an clement of K. By Proposition 25, A; is con-
tained in S. Hence 7(A)C7¢(B) where 7¢(B) is a maximal right annihilator of a
nonzero right ideal of S. Therefore, Br(A,)=0, and so BCA, By Proposition
2h and Proposition 24, BA; is a nonzero right ideal of T which is contained in
B. Now r(A4,)Cry(B)Cr(BA;). However, the maximality of »(4;) implies that
r(BA)=r(A). Therefore, 7(A;)=7r5(B) and r(A,) is a maximal right annihilator
of a nonzero right ideal of S.
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Suppose rg(B) is a maximal right annihilator of a nonzero right ideal in S. By
Proposition 2e, B is not contained in r(A}.) for some 7 and AJ.B#O. By Propesition
oh, BAjvéU. Since .4jCS. then BAJ.CB and ?‘s(B)CF‘s(BAj)CrS(Aj). The maxi-
mality of »¢(B) impliés that 7¢(B) frrs(Aj)ﬁr(Aj). Therefore, 7(B) is a maximal
right annihilator of a nonzero right ideal of T.

We now consider the members of Subset 3.

THEOREM 5. Let S be a Goldie subiing of an absolutely scmiprime Goldie ring
T. Suppose S satisfies the conditions fmposed on members of Subset 3. Thken S is
semiprime Goldie and S and T have the scme quotient ring.

PROOF. Since S+7(A)=T, i=1,2,+,n, A;NS is an ideal of 7. By the maxi-
mality of r(4;), r(ADNS=r(4,NS). Using a proof similar to that of (3,
Lemma 1], we can show that #¢(4;NS) is a prime ideal of S. Suppose that
UVCrg(A4;NS) where U and V are ideals of S. Then (4,NS)UV=0. If (4,NS)
U=0, then we are finished. So suppose (4,NSHUF#0. Thus VCrgl(4,NSHU].
However, (A;NS)U is a right ideal of T since S+7(A4;)=T. Therefore, r[(4,NS)
Ul =r(Ap. Since rg(A,NSU] =r(ADNS, then VCry(A4;NS). We conclude that
r(A)NS is a prime ideal and S/r(4,)NS is a prime ring.

Suppose N is a nilpotent ideal of S. Then N is contained in 7(4,)NS, i=1,2,
-+, . By Proposition 2¢, N=0. Thercfore, S is semiprime.

In [3], Herstein proved that a semiprime Goldie ring T has Q(T/r(4,))®-®Q
(T'/r(A4,)) as its quotient ring where Q(7'/r(A,)) denotes the classical quotient
ring of T/r(A4;). Since »(4))NS is a right annihilator of a right ideal, S/7(4)NS
has a.c.c. on right annihilators [3, Lemma 4]. Furthermore, by mimicking the
the proofs of two results of Herstein, we can show quite easily that S/7(4,)NS
has no infinite direct sum of nonzero right ideals [3, Lemma 4] and that Q(S/r
(APNS)D--@Q(S/r(A,)NS) is the quotient ring for S [3, Teorema]. In order
to show that §/r(A)NS and T/r(A;) have the same quotient ring, it suffices to
show that S/7(A)NS and T/r(A;) are isomorphic. But since S+7r(A4;)=T, this

follows from the Isomorphism Theorem.

2. Direct Sums.

For the remainder of the article, IDS will denote infinite direct sum of nonzero
right ideals.
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In this section, we show that T is the direct sum of S and A; where S belongs

to Subset 1 and A;NS=0. First we need the following lemma.

LEMMA 6. Let S and | be subrings of an absolutely semiprime Goldie ring T such
that S has no 1DS and sJCJ and JsC] for each s belonging to S. If S+J has an
IDS and S/SN]J has no IDS, then | has an IDS.

PROOF. We will prove the contrapositive of the lemma. It suffices to show that
if J has no IDS and S-+/ has an IDS, then S/SNJ has an IDS. Suppose I+

+I, 4+ is an IDS in S+/. Since S and J have no IDS, we may assume that
I.NS=0 and I;,NJ=0 for =1, 2, «-, Let S;=1{s€8: JayE]J such that st+yEl}},
t=1, -, n. Then S; is a right ideal in S. Also §; is not contained in SN J. For

if x=SNJ and y&J such that x+y&l,, then x+yEl,NJ. I;N]=0 would imply
that x+y=0. Since I;340, then S; is not contained in SNJ.

We claim that there is an infinite sequence of S;, say Sy. Sy, *+ where N

is a positive integer, such that S:'n:i;]\r S,CSNJ for j=N. We assume that the
s " : G n N(1)-1
claim is false. Then there exists a positive integer N (1) such that Sy, )ﬂZk:({]
S,&SNJ. Hence there exists s, belonging to S, #=1,2, -, N(1) such that sy,
is not in SNJ and
(€Y Syt b sy 1 —Syay =0
Now there corresponds to each s, some y, in J such that s,+y,&I,. Let #,=s, 1y,
and {=t;++iyqy —tye)- Thus £ belongs to Jy=I ++1Iy . Now sy.,&
SNJ implies that vy 70 Since J, is a direct sum, it follows that # is nonzero.
Using Equation (1), we find that Nyt Ivay 1IN is a nonzero element
of J,. But then J;NJ is a nonzero right ideal of J. Now there exists an N(2)>

N(2)-1 4
N(1) such that Sy, NEy ey 11 SiE SNJ. We let Jo=I ) 1 +tIye It is

easily seen that J,NJ is a nonzero right ideal of J. By induction, we can define
Ji=1,2,-+ such that J ++++J,++ isan IDS in J. But, by assumption, J has
no IDS. Hence the claim is proven. So we might as well assume that N=1.

Let S/ be the image of S; in S/SNJ under the natural homomorphism. We
claim that there is a positive integer M such that S, /-+S,, ,"+++ is an IDS in

S/SNJ. §/#0, j=1,2,. since S;,ZSMNJ. Now suppose that no such M exists.

_ M1

Then there is a positive integer M (1) such that SM(I)IDLJ-:l S’.‘;éO. Hence

there are s,/€S)’ where 5,ES,, k=1,2,++, M(1) such that st’;ﬁO and
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@ St Sy -1 Sy =0
But st';éO implies that sy, ,&SNJ. So there corresponds to Sprcry SOME Yy
in J such that Sy P is a nonzero element of Ip1y- By Equation (2), s+
=81y -1~ Sy belongs to SNJ. If 3, & such that 7,=s,+y, is an clement of
1,, then r=rytee T yay 1~ uq) belongs to L;=1+-+ IM(U. But since a1y

#0, 7 is a nonzero clement of L;NJ. Similarly, we choose M(2)> M (1) such that

. M(2)—1 ’ : :

Sy an:M)(lHl Sj #0. We can show that L,NJ#0 in the same manner as we
did L;. Continuing by induction, we find that LN +++(L,NJ)+++is an IDS
in J. But we have contradicted the assumption that J has no IDS. Therefore,

the claim has been proven. Hence S/SN J has an IDS.

THEOREM 7. Let S be a maximal Goldie subring of an absolutely semiprime
Goldie ring T. If A,NS=0 for some i, then T is the direct sum of the additive
groupstructures of S and A;.

PROOF. Since A4;NS=0 and A0, then S is properly contained in S+ A,
Assume S+-A; is properly contained in T. S+ A4, inherits a.c.c. on right annihilators
from T. However the maximality of S implies that S+ A4; is not Goldie. Therefore
S+A4; has an IDS. We can apply Lemma 6 to show that A; has an IDS, I+
+1,+ . Then I A;t+-+I A+ is a direct sum of right ideals in 7. Therefore,
there exists a positive integer N such that JyA,+Jy . A4+ =0. By Proposition
2h, Jn+J 1t is contained in 7(A4;). Thus A4;N7(A)70, and Proposition 2d
has been contradicted. We conclude that S+A4,=T.

3. Subdirect Sums.

In this section, a necessary and sufficient condition for a maximal Goldie subring
of T to belong to Subset 4 is given.

LEMMA 8. Let S be a maximal Goldie subring of the absolutely semiprime Goldie
ring T. There cannot exist simultaneously in T maximal right annihilators of Type
1 and Type 3 with respect to S.

FROOF. If 7(A)) is of Type 1 and r(4,) is of Type 3 with respect to S, then
S+7(A,) has an 1DS, Iyjtesetd + oo, It follows easily that there exists an N such
that I, +-+CA NA,. However, we have contradicted Proposition 24.

THEOREM 9. Let S be a maximal Goldie subring of an absolutely semiprime Goldie
ring T. Then S is a member of Subset 4 if and only if S is a subdirect sum of the
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rings S/r(APNS.i=1,2, -, n and each S/r(A)NS, i=1,2,++,n kas en IDS.

PROOF. First we prove the necessary portion. Since, by Froposition 2e, [r(4))
NSIN---N[r(A4,)NS] =0, then S is a subdirect sum of the rings S/r(4,)NS. Since
r(4,) is of Type 3, S+7(A4;) has an IDS. But r(4) has no IDS. For if r(A4)
had an IDS, I +--+I, ++-, then there would exist a positive integer N such
that Iy+1Iy +-Cr(A)NA;. Applying the contrapositive of Lemma 6, we find
that S/r(A)NS, i=1,2, -, n has an IDS.

Now we prove sufficiency. Suppose S is a subdircct sum of rings S/7(4)NS,
=1, -+, n with IDS. Suppose that r(4,) is*of Type 2 and AJOS#(J. Even if S is
not semiprime, we can use the semiprimeness of T to show, as we mentioned in
the proof of Theorem 5, that S/r(Aj) NS has no IDS. Now suppose (A4 j) is of
Type 2 and AjﬂS:O. By Theorem 7, S+A‘,-=T. It follows from Proposition 28
that S+7(A4)=T, i#j. Since S/r(4)NS has IDS, then A,NS=0, /#j. Hence
Aiﬂ(r(Aj)ﬂS):O. i=1, -, n Also, r(Aj)ﬂS is an ideal of T since S%—Aj:T.
Thus 4,Cr [r(Aj)ﬂS], i=1, -, #. Furthermore, r(Aj)ﬁS#O since otherwise
S/r (A]-)ﬂS would be Goldie. Since r[r(AI-)ﬂS] is contained in a maximal right
annihilator of a nonzero right ideal, there exists a positive integer k, 1<<k=n, such
that A, $7(A4,), i=1,--,n. But then A4,Nr(A4)#0. Therefore, Proposition 2d is
contradicted. We conclude that no element of K is of Type 2.

Now each 7(4,) is of Type 1 or Type 3. But by Lemma 8, right annihilators
of both Type 1 and Type 3 with respect to S cannot exist in 7. We assume that
the »(A,),i=1, -, n are of Type 1. By Theorem 3, S is semiprime. By Theorem
4, each r(4), i=1,--,n, is a maximal right annihilator of a nonzero right ideal
of S. By [3, Lemma 4], S/r(ADNS has no IDS. Therefore, 7(A), -, r(A,) are
of Type 3. If A NS=0 for some ¢, then S+A4,=T. Thus ANS#O, i=1, =, n
Therefore, S belongs to Subset 4.

Now let us suppose that § is a maximal Goldie subring of T' such that some
elements of K are of one Type and some elements of K are of another Type with
respect to S. Lemma 8 tells us that there are only two possibilities: elements of
Type 1 and Type 2 or elements of Type 2 and Type 3. Results of the author’s
work in these cases are partial at present.

This paper is based upon a portion of the author's doctoral dissertation written
under the dircction of Professor Robert H. Oehmke at the University of lowa.
The author is indebted to Daniel Britten for his assistance with the example which
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is mentioned in the introduction of this paper. Part of this paper was presented
by the author at the Summer Mathematics Symposium, Appalachian State Uni-
versity, Boone, North Carolina, August 1969.

State University of New York
Potsdam, New York
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