A Note on Equivalence Relations and
Continuous Functions

Byung-Yung Kim

1. Introduction

The theory of set, which was founded by G. Cantor(1845—1918), is not only one of the most
important tools in modern mathematics, but also the greatest creations of the human mind. It has recently
become an essential part of mathematical back ground of high school students and teachers.

In this note, my aim is to provide some fundamental properties of sets, relations and functions. The
first chapter presents required concepts of set theory. The second chapter treats relations, equivalence
relations and quotient sets. The third chapter, on topological spaec, defines continuous function and on
connected space proves the generalization of intermediate values theorem with properties of continuous
function. .

-Prerequisites for reading this note are only the concepte of “least upper bound” in analysis, and the
validity of the general distributive law of |J over ﬂ in proof of 4.12 theorem can be found in Dugundji
(2) 9.6, p.55.

2. Sets

The theory of sets has been described axiomatically in terms of the notion “member of set”.

Because to build complete theory of sets from these axiomis a long, difficult process, we take the notion
of set as intuitively. We think of a set as something made up by all the objects that satisfy some given
condition, such as the set of prime numbers, the set of points on a line, or the set of objects named in
a given list. The object making up the set are called the element of the set and may themselves be sets,
as in the set of all lines in the plane,

Roughly speaking, a set (class, family) is any identificable collection of objects of any sort. Sets will
be denoted by capital Roman letters: A,B,C,X,Y,Z,. Elements (points, members) of sets will be denoted
by small letters: a,b,¢,X,y,2. A set is often defined by some property of its elements. We will write
{z|p(z)} (where p(x) is some proposition about x) to denote the set of all x such that. p(x) is true.
For example

A={a,b,c,d}
B= {x|x is an integer, x>0}

C="%“open interval from a to ”
= {x|a<x<b} =(a, b)
X={x|x?—2x+1=0} = {1}
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If the object x is an element of the set A, we will write x €A; while xZA will m. hat %
is not in A.

2,1. (Def) Let A and B be sets such that for al! , x€A implies x&B. Then A is called a subsey
of B and we write ACB. If ACB and BCA, then we write A=B. If ACB and AXB, we say
that A is proper subset of B and we write ACB.

We write ¢ for the empty set: it has no elements at all. Empty set is a subset of every set, and
ACA for every set A, the fact that the empty set is a subset of every set is based on a point of
logic: by 2.1, it is clear that if A is not a subset of B, the following statement must be true; “There
is an element x such that x<A and x&B.” But if A is empty, there is no x such that xEA,
and the above statement is false (See 2,9, exercise) <

2,2, (Def) If A and B are sets, then we define AUB as the set {x|xEA or x&B} (here “or” is used
the sense of “and/or”), and we call the Uniom(or Cup) of A and B. Let ¥ be a family of sets,
then we define N Y = {x|x=A for some Ac%}. We define A(B as the set {x|x=A and x&=B},
and we call ANB the intersection (or Cap) of A and B, also we define ¥ = {x|x=A for all
Acs¥).

If ANB=¢, that is. if A and B do not have any element in common, then A and B are said to
disjoint.

For example
1) Let A={1,2,3}, B={1,2,{1,2},} then

AUB={1,2,3{L,2), {1,2,3}} ANB={1,2}
2) Let N= {x|z is a natural number}
An={x]z is a real number, |z|<, z&N},

U = (A 2EN),
Ba= x| —+=e=),
B= (B.|n=N)

thenﬂ?[:ﬁAn= {0)

UB=UB,= (z| ~1=z=1) =4-1,1)

2, 3. (Def) Unfortnnately set theory leads to coniradiction when one uses sets that are “too big,” such
as to speak of a set which contains everything, as Frege and Russell supposed. Therefore, in most of
our discussions, all sets are subsets of a some fixed set; we call this set the Universal set and denoted
by X,Y.

2,4. (Def) Let A and B are sets, we define A—B as the set {z]x=A and z=B) and we call A—B
the difference of A and B, and we define A’ as the difference of the universal set X and A, that
is, A’={z|z&X and z&A}. A’ is called complement of A. For example, Let X={1, 2,3, 4,5, 6},
A={1,2,3,4), B={3,4,5} then A—B={i,2}, B—A=1{5}, A'=1{5,6} and B'={1, 2,6}

2,5. (Def) For a set A, the family of all subsets of A is a well defined family of sets which is known
as the power set of A and is denoted by ‘B (A). For example, if A= {1, 2}, then B (A)= {4, A, {1},
{2}.}

Let a(A) denote the number of elements of A, then @(A) is a nonnegative integer, and the foll-
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qQuivalence

\
ow- propositions are true.
) a(ANB)+a(AUB)=a(A) +a(B)
2) If a(A)=n, then a(B(A))=2"
Proof. Since ,Cn is the number of elemenis of family P (A) which contains m elements of the set A,
a(B(A))=aCo+nCit oo +aCrteereee +4Cr=(L+1)n=2n
For exampl, Let A={1,2,4}, then B(A)={g, {1}, 2, {4}, (1,2}, (2,a, {a,1},A}. just as a(B
(A))=2%=8

2,6. Theorem 1. Laws of the. algebra of sets

Let A,B,C be any subsets of X, then we have:
(1) AUA=A 1) ANA=A Idempotent Laws
(2) AUB=BUA (2" ANB=BNA : Commutative »
(3 (AUB)UC=AUBUOC) 3") (ANBYNC=ANEBNO Associative
(4) AUBNC)=AUBNQUC) @) ANBUC)=(ANB)U(ANC) Distributive
(5) AUg¢=A (5’) ANX=A Identity "
(6) AUX=X ' (6" ANg=¢ " "
(7) AUA' =X () ANA' =9 Complement #
(8) (A=A ' @) X'=¢, ¢'=X I 7
(9) (AUBY=A'NP (9) (ANB)Y'=A'UF De Morgan's »

Proof. 4y ANBUC)= {z|z&A and z&BUC}
= {z|z=A and (z€B or z&C)}
= {z|(z=A and z<B) or (zEA and z=C)
= {z|z=ANB or z=ANC =(ANBYUANC)
8) re(A") ==zEA —==zcA
9) zE(AUB)’:z—-)xé/A'(UB’ Ye==zZA and 2EB==z&A’ and zCB =zc=A'NB’
9) By (8)(9), (A’UBY=((A"YN(B))}=ANB
Hence by(8) A'UB'=(ANB)’
Another Proof is very simple.

b L B 5
\  Each of the following conditions is equivalent to ACB i
i (1) AnNB=A (2) BCA’ (3) BUA'=X
{ (4) AUB=B (5) ANB' =¢

Proof: (1) ACBe==(r€A—z=B)e==(z€A—2z=ANB)~—=ACANB
zeAUB—zsA==ABCA

(2) ACBe=(z=A—2SB) == (2EB~28A) = (z—B —z—A")e==B CA’

(3) Since every set is a subset of the universal set X, BUA’CX, thus only the converse
inclusion requires. If =X then z is contained in either A(ACB) or A’. In either case,
zEBNA’. 1t follows XCBNA'.

(4) BCAUB is trivial by 2, 2. (Def) ]

ACBe=(z&AUB—zEB)e==AUBCB |

}(—'==>A[']B=A

<==»AUB=A
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(5) BGA==(3z : zEA and zx&B’) (there exist z such that £&A and £EA and zEB')
(37 : 2EANB)==ANB'%¢
2,8. exercise
(1) B—A=BNA'
(2 (A-B)NB=¢
(3 (A-B)U(B—~A)=(AUB)—(ANB)
Proof: (1) B—A={z|z€B, 2EA} = {z|z€B, z<A’} =BNA’
(2) (A—B)NB= {z|z&B, 2EA—B} = {z|2&B and (€A and 2ZB)} =¢
3) (A-B)UB-A)=(ANBHYUBNA)={AUB)UB} N {(ANB)HUA"}
=(AUB)NB'UBN(AUA)N(B'UA)=(AUB)NXNXN(ANB)
=(AUB)N(ANB)'=(ANB)—(ANB).
2,9. exercise
Empty set ¢ is a subset of every set.
Proof Let A is any subset of universal set X, then A’CX. Hence

A'CX &= (A)YDX = AD¢
_ 2.7(2) 2.6(8)

Another proof
PCAE= (zcpe=22A) v
&= (2zEA>DzE¢): Since ¢ has no element at all, the latter proposition is true.

3. Relations and equivalence relations

3,1. (Def) Let X and Y be sets. The Cartesian Product of X and Y is the set XxY of all ordered
pairs (z,y) such that z&X and y&Y.
We write (z,y)=(%,v) if and only if z=« and y=v.
Thus (1,2)3:(2,1) while {1,2) ={2,1).
Clearly, Euclidian coordinate is the Cartesian product of the set of real numbers X and Y.

8,2. (Def) A relation is any set af ordered pairs. Thus a relation is any set which is a subset of the
Cartesian product of two sets. Since ¢ is a subset of every set, ¢ is a relation.

3,3. (Def) Let R be any relation. We define (z,y)ERCXxY if and only if “z is related to »”
written XRy, and define the Domain of R to be the set Dom R= {z|(z, y)ER}, the Range of R
to be the set Ran R= {y]|(x, y)=R}. The symbol R-! denotes the inverse of R : R-1= {(y, z) ]| (=,
y)ER}.

3,4. exercise
Proof Ax(BNC)=(AXB)N(AXC)

Ax(BNO={(z,5)|z€A, yBNC) = {(z,5)|z=A, yB, y=C}
={(z, | (z, 5 €AXB, (z,5)=AxC}=(AxB)N(A%C)

3,5. example Let R be the relation < fromA={1,2,3,4 to B={l,3,5},
that is, (e,b)ER if and only if a<b,
then R= {(a,8)] (e, ) ERCA xB, a<l8 ={((1,3), (1,5), (2,3), (2,5), (3, 5), (4, 5)}
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]

Dom R=A, Ran R=B— {l} = (3, 5)

3,6. example Let £ be the relation from the’ set of real number E to E, defined by if both z&=(n,
n+1) and y&(n,n+1) for some integer n where {n,n+1) = {a|n==a=n+1}, then relation F consists

of the shaded squares below.

3,7.example Let F be the relation in EXE by (z,y)&F if and only if 0=x—y=1, then

F= ny y) |z, yEE, y==z, y=Zz—1)

F-l={(y z) |z, yEE, y=z, y=z—~1} = ((z,) |z, y=E, y==z, y=z+1}

Futhermore {(z,y)|y=x+1} is a relation.
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3,8. (Def) A relation R in A (that is, RCA X A) is called an equivalence relation if:

(1) relexive, For each a=A, (a,a)=R
(2) symmetric, (a,5)SR=>(b,a)<=R

—16 —



BEHH 72. 6

(3) transitive, (a,b)ER, (b,0)ER>(q,6)ER
Here, if(a, )R, we say that a and & are equivalent.
Let R be an equivalence relation in A, For each a=A, the subset R,= {bl(a, b)ER)CA is called
the R-equivalence class of a.
The main theorem on equivalence relations is a consequénce of following Lemma.
3,9. Lemma Let R be an equivalence relation ir A. then:--
L (1) URd|ecA) = - (2 If (a,b)ER, then Re=R,
3) U (a,b)ER, then R:NRy=¢ '

Proof (1) For each aEA because (a,a)EA, we have aERa, and therefore ACU {Rs|ecA}.
It follows A=U (R, |a<=A}
(@) ¥ (a,b)eR (that is (b, 2)ER)

xER"jg‘t’ a%é—eER) (z,b)eeR>zeR;, this showing R.CRs.

xER”i&t’ 22%)3(“’ a2)ER z&R,, this proving that RyCR,, Consequently R.=R.

(3) Assume RiURsic4, then there is & such that k(&RsURs, we have (%,a)ER dan (%,5)
&R, so that symmetry and transitivity of R give (a,b)ER, showing that proof of (3) is
complete.

3,10. (Def) If {A.Jac¥} is a covering of X, that is, U{d«]aE ¥} =X and if AsCAp=¢ whenever
a>cB, then the family {A:|a=¥} is called a Partition of X. :
3,11, Lemma If {Aslas¥) is a partition of X, then there existan equivalence relation defined by !

| zE&A. and yEA, for some a ¥ if and only if (z,y)<R. i

Proof (1) For each z&X, because {A.|@EA} is a partition of X, there is a a& ¥ such that 2=A..
Thus (z,z)ER, this means that R is reflexive.
() (z,y)ERe==zcA, for some acShe(y, z)<R, that is, R is symmetric.
3) (z,2)=R, (3,2)ER==>(xSAs, y=As) and (YEA 2EA;), Since family {Ad is a
partition, a=4.
==z, y, 2EA (2, 2) ER R is tramsitive.
Lemma 3,9~11. give the following theorem
3,12. theorem R is an equivalence relation in A if and only if there is a partition {A«]las=¥}.
! Futhermore the set A, is precisely the R-eguivalence classes {R.|(a,8)ER, asA)

Each element of an R-equivalense class R, is called a representative of R.. With each equivalence
classes we constructed a new set according to the following.

8,13. (Def) Let A have an equivalence relation R. The set whose elements are the R-equivalence classes
is called the quotient set of A by R and is written A/R.

3,14. example Let R be the relation in I, the set of integers, defined by (z, ¥)ER&=z=y(mod 3)
which reads “z is congruent to y modulo 3” and which means “z—y is divisible by 3”. Show that
R is an equivalence relation and quotient set.

Proof (1) z—x2=0=3-0, 0<I, Hence z=z(mod 3)=(z, z)ER. (reflexive)
(@) (z,y)eRe=z=y(mod 3)>x—p=3k r=I>y—z=3(—%), —k&SI>y=2(mod 3)
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== (y, z)&R (Symmetric)
(3) (z,9)ER, (3,2)ERDz=y(mod 3), y=z(mod 3)Dz—y=3m, y—z=3n, m,n]
Dx—z=(z—y)+(y—2)=3m+3In=3(m+n), m+ncl
Sz=z2(mod 3)e==(z, z)&R (transitive)
Therefore, by 3.12 theorem, there is exactly the quotient set I/R= {Ry, Ry, R2} such that
Ro= {-+, =6, —3,0,3,6, ---} =-~=R_g=R_y=Ry=Rg="
Ri= {---, =5, ~2,1,4,7, -+} =+-=R_s=R_g=R(=Ry=+--
Ro= {+-, —4, —1,2,5,8, --} =---=R_¢=R_;=Rs=Rg="--
3,15. example: Let X be the set of all students of our school.
If we define a relation R in X such that
(z, y)&ER&=="First name of = and y are same or T=y.
then R is an equivalence relation and hence
X/R= {Riimy Rices Rporty Rjung}.
But “z is a friend of y” is not transive.
3,16. example
Let A={1,2,3,4) and R={(1,1)(1,2)(2 1)(2 2)(3, 3) (4, 4)}
then R is an equivalence relation and the quotient set A/R is the set {{1,2},3,4}.
3,17. "example
Let X be a set and I is the unit interval {0,1), then the set (Xx {(})x[(Xx {—1)) is an
equivalence relation in X xI and the quotient set X xI/Xx {1} is obtained by XxI by pinching
Xx {1} to a single point.

4. Functions and Continuous functions.

4,1. (Def) Let £ be a relation and let A be a set. We define the image of A under F to be the set
f(A)= ly|(z, y)F for each z=A}.

The inverse image of A under f is the set f~1(A). And we define f is a function if and only if
(z,)ES and (z,2)Ef imply y=z.

4,2. (Def) Let X be a set. A topology in X is a family 7 of subsets of X that satisfies:
(1) Each union of members of 7 is also a member of 7
(2) Each finite intersection of members of 7 is also a member of 7
(3) ¢ and X are members of 7

A couple (X,7) consisting of a set X and a topology 7 in X is called a- topological space (or
space).

The members of 7 are called the “open .sets” of the topological space (X, ), the complement of the
open set is called “closed set”. For some =X, any open set containing x is called a neighborhood
(written nbd or U,) of z.

4,3. example Let X be a set, 7= {¢,X}. This topology, in which no set other than ¢ and X is open,
is called the indiscrete topology. v==% (X) is called discrete topology. In the sense different topologies
in a set X give different organization of the points (elements) of X.
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4,4. theorem A set is open if and only if it contains a neighborhood of each of its points. e :

Proof U= {B|B is open subset of A} is clealy open and is a subset of A(UCA). If A contains a
neighborhood of each of its points, then each point z of A belongs to some open subset of A
and hence z&U. In this case A=U and therefore A is open. On the other hand, if A is open
it contains a neighborhood (i,e,A) of each of its points.

4,58, theorem: Euclidian topology on real line E
Let E be the set of real numbers, a set GCE is “open” if for each 2&G there is an 70
such that the symmetric open interval B(z,7)=(x—r, 2+7)={y||y—2|<y) CG. Then the
family ¢ of sets declared “open” is a topology in the set E.

Proof (1) If each member of {Ga|a=A} is “open”, since
2&GqDthere is an @ such that z&G.(Fa : xG,)

2Fr>0:B{xiy) (GanGa), each union of members of 7 is also a member of 7.

(2) I Gy, Gy veert ,Gn are “open”, because xE(“]Ggi(for all {: 22G;)
i=1 .
(for all 7 F7:>0: Bz : 1) CG)>B(x : min(yy, ra, ++eoer ,Tn))C_DlGi),

each finite intersection of members of T is a also a member of 7.
(3) is trivial. which completes the proof.

This topology 7 is called the Euclidian (usual) topology, the tépological space (E,7) is
called Euclidian space, Each open interval U= {z|a<s<b} =(a,b) is a open set in Eucli-
dian space (E,7). Because for each 2&U>(Er : B(z : Min(x—a, b—2z))CU)>Ucr.,

It is simple to see that 7 can also be described more directly as the family of all unions
of open intervals.

4,6. (Def) Let X and Y be two topological spaces, and let £ be a function on X into Y, We define
7 is continuous if and only if the inverse image of each open set in Y under £ is open in X.
4,7. theorem Function f is continuous on X to Y if and only if for each z&X and each nbd

i
i

i Wi in Y, there exist a nbd V, in X such that f(V,)CWs.

Proof (only if) For each nbd Wy, in Y there exist a nbd V) CWy, because Wy is open.
Thus, since f~1(Vy()=U;: is open in X, there is a nbd U; such that f(Us)=ViuyCWyie
(if) Let U is open in Y, then for each & f~1(U), there exist a nbd V, such that f(V,)CU,
therefore x&V.Cf-1(U), it showing that f~1(U) is open in X. Hence f is continuous.

4,8. (Def) An Ff:X—Y is continuous at xy=X if 4,7 theorem is satisfied at z;, that is, for each
nbd Wy, there is a nbd Vi in X such that F(V:)CWy(x.

4,9. Remark Let f:E—E, that is, a real valued function on the set of real number. The continuity
at xo<E is simply to usual notion encountered in real analysis. For: By 4,5 and 4,8, f is continuous
at zo if for each open interval (that is open set) Wy g =(f(xy) —¢, f(x0) +€), there is symmetric
open interval Vy=B(zp: ) mapped into it by f, that is, for each €>0 there exist d>>0 such that
|2—20| <B=> | f(2) —f(20) | <e, written V>0, FT>0: |z—z0] <6 [f(2)—f(x0) | <e, because
S(Ve) TWianye
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4,10. theorem Let f and g are continilous at zp on E into E, that is, ve>0,
>0 1 |z—20] B f () —f (z0) | <e
A6>0 1 |x—x| <0 | g(x) —g(20) | <€, respectively,

then @ f(z)+g(x) @f (x) -g(2)
@ c¢-f(x), for any real number ¢ @ 7—5—- pr0v1ded f(.zg)#()

are continiuous at z,.

Proof (1) V€>0, there exist 1,02 such that
| z~20] <1 imples 1f(2)—f(20)| <5

| 2~a0| <07 implies |g(z)~g(z0) |<5-
Therefore, if we take d=Min(dy, d2) implies
If(2) +g(2) — (f(z0) +g(z0)) | =1f(2) — f(za) | + |8 (2) —g(20) l<%+—€2—=€
This proves (1)
(2) we use the identity
f(2)g(x) —f(x0)g(z0) = (f (z) —f (20)) (g (z) —& (Io))
+£ (20 (g (x) —g (x0) ) +& (0) (F (x) ~f (0)).
Given €0, . _
T : |o—m] <O @) 1</

@ & | 2=l <O le(@) ~g(20) 1<)/
03 1 |z—20| <32 g (z) —g(x0) | <T|f%|—

s ¢ |2—20| <8 | f(2) —f (20) | <z 3Tz (xo)l
therefore, for each 2&B(z¢;0) such that d=Min(d, ds, I3, 04)
[f(2)g (2) —f(z0)g (z0) |Z1f(2) —f(20) | - 1g\2) —g(z0)|
+Uf@0)- 2@ —g(w) | + g |- If @ —f @) 1<y S - S+ §+5=
If f(xg)-g(xg) =0, the proof is more simple.
(3) Given €0, @5>0 |2—a0] B> 1f(@) ~f(20) I <&r
Thus, vz&=B(xq : 9)
|ef (&) —cf (za) | = el f (@) —f (o) | = (2w) | <lel - =¢
If ¢=0, the function c¢f is constant.
(4) Given €0, if we take £ such that [f(xo)| >k>0,
then, 01 ! |z—z0]| <> |f(2) [ >k>0
and J0: : |z—xz0| <02 | f(2) —f (z0) | <k|f (z0) | €.
Hence, let d=Min(d, dz), then I:c—xol<6:>

1 |_[f () —F () | _ 1 e
7@ <zo>| e E TETiGT @~ @) | gy H @ le=e

this implies is continuous at .
f ( )

Since, by 4.10 theorem (3), (4), ;E:cg =g(x) —r—— f( NiOR is continuous at xp
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4,11. example
f= [(z, ¥) |y=sin -i;] is not continuous at z=0. For: for each a>0, there exist z=n—;—<5 such

that sin%: . therefore, there is not open set (—a,a) such that

. fl(—e, a)]C(—%, %—) in range space.

4, 12 theorem Let(X, ¥) is a topological space and let A is a subset of X, then € = (BUA|B=1} |
{ is a topology for A and this called relative topology on X, ¢

Proof (1) Let 8.1, B.NAESX for each @, then, by equality U B.NA)= (UBa) ﬂA:}UB‘.E‘T
@ agl (B:NA)= (quB,) ﬂAjanBae‘I,

) #NA=p, XNA=A imply ¢, X&Z
4,13. (Def] We deffne (A, F) is a subspace of (Xz) in 4.12 theorem
4, 14. (Def) A space X is Connected if it is not the union of two nonempty disjoint open set. A subset

BcX is connected as a subspace.
For example, Let X={0,1}) z={{0},¢,2} B(2),
then topological space (x,7) is conected but (X, B (z)) is not connected.
4,15. theorem; the only connected subset of Euclidian space E having more than one point are E
| and intervals (open, closed, or the of half open)

Proof 1t is uffice to show that, if zEA, yEA and z<z<y then z&A if and only if A is
connected.

(If) If xz=A, y=A and 2<2<y then 2ZA then
A=({ala<z} NA)U ({a]la>2} NA). It follows A is not connected by 4.12, 13, 14.

{only if) Suppose A is not connected, then there exist elements z=A, y=A with <y, and there
exist disjoint ope set B,C, in A such that z&B, y=C, and ACBUC

Let S=8((z,y) and let = be the least upper bound of S. Since x &B, 8 is open, we have
z<z, thus if we had 2&C, the fact that C is open would show that z is not least upper bound
of S. Hence 2ZC. Since ACBUC it follows that 2ZA, which completes the proof.
4,16, Theorem Let f is continuous function on X into Y and let X is connected then f(X)CY is

also connected.

Proof If f(X) is not connected, there are disjoint open sets U and V in Y, both of which intersect
SF(X), such that f(X)CUNV. Since f is continuous, the set f~(U) and f~!'(V) are open in
X. they are clearly disjoint and nonempty, and their union is X. this means that X is not

connected in contradiction to the hypothesis.
4,17. Theorem Let f be a continuous real valued function on a connected space X. If f(z)=a, i
f(z')=b then (a,b)Cf(X). That is, for each ¢ such that a=<c=d, there is an z with f(z)=c. i

Proof Since the image of a connected set under continuous function is also connected by 4.16,
F(X)CE is connected. Therefore f(X) is an interval according to 4.15. Thus, if f(X)=a,
F(X")=b, we have (a,8) Cf(x).

This theorem is called the generalization of intermediate values theorem. (P.112 A %)



