On the space of closed subsets of a uniform space

BY

Byung Yung Kim

Choong Buk Collage, KOREA

1. The family X of closed nonempty subsets of a metric seace E can be made into a metric space. When E is complete, so is X. If E is tatally bounded then so is X (II. § 15, § 29). If E compact then X is compact (II. § 28).

In a similar way, the family X(Y) of the nonempty closed subsets of E(F) relative to the Hausdorff uniform topology for E(F) can be made into a Hausdorff uniformity for X. Robertson(N) proved that the space of X consisting all the nonempty compact subsets in E is always complete provided that E is complete in the Hausdorff uniform space.

In this Hausdorff uniform space, the first result of this paper shows that if E is tatally bounded then X is totally bounded. The second result is that if F is a closed subspace of E then Y is a closed subspace of X. And the third result is that X is compact if E is compact.

2. Lemma 1-

A uniform space is compact iff it is tatally bounded and complete (I. 6.32)

Suppose that E be a uniform Hausdorff space and u be a base for the uniformity for E and that X be the family of all closed subsets of E relative to the uniform topology for E. Let v be the family of all sets of the form

 $W_U = \{(A.B): A \subset U(B), \\ B \subset U(A) \text{ in } X \text{ for eash } U \text{ in } u\}$

then each member of v contains the diagonal. Since each member of v is symmetric if $W_{U} \in v$ then the inverse of W_{U} contains a member of v. Let V be a member of u such that $V_{U} \subset U$ then $W_{V} \subset W_{U}$. Therefor if $W_{U} \in v$ then there exists W_{V} such that $W_{V} \subset W_{U} \subset W_{U}$ for some W_{V} in v. If $W \subset U_{0} V$ then $W_{W} \subset W_{U} \cap W_{V}$, therefor the intersection of two member of v contains a member of v. And if $\bigcap \{U: U \in U\}$ is the diagonal then $\bigcap \{W_{U}: W_{U} \in v\}$ is also diagonal. Consequently X is a uniform Hausdorff space.

Theorem 1-

If uniform Hausdorff space (E.u) is totally bounded then the uniform Hausdorff space (X.v) of closed nonempty subsets of E is also tatally bounded.

(Proof) Since E is totally bounded, for each U in u there is a finite subset F of E such that E⊂U(F). Let H be the family of all subsets of F then H is a finite subfamily of X. Let A be a closed subset of E and U be a symmetric member of u then for each element x of A there is a member x_n of F such that x∈U(x_n) and x_n∈U(x) and hence x_n∈U(A).

Let $B_i = \{x_n: x_n \in U(A) \ x_n \in F\}$ then B_i ie a member of H and B_i is nonempty. It follows that $B_i \subset U(A)$ and if $x \in A$ then

 $x \in U(x_n) \subset U(B_i)$ and hence $A \subset U(B_i)$. This fact implies that $(A_i, B_i) \in W_U$ and $A \subset U(B_i)$. $W_{U}(H)$ Therefor $X=W_{U}(H)$ is totally bounded.

Theorem 2-

If F is a closed subspace of E then Y is a closed subspace of X

(proof) If B∈Y then each neighborhood of B intersection with Y is nonempty, that is for all U in u Wu(B) ∩ Y≠O. Hence there is an element A of Y which is closed subset of F and such that A∈Wu(B). It follows that B⊂U(A) and hence B⊂U(F) for all U in u. Therefor B⊂Ω{U(F): U∈u} = F. Since B is a closed subset of F, B belongs to Y. consequently Y=Y, that is, Y is closed subspace of X.

Theorem 3 (Robertson [N])

Let E be a complete uniform Hausdorff space X be the space of closed nonempty subsets of E under the Hausdorff uniform structure then nonempty compact subsets of X form a complete subspace of X.

Theorem 4:

If Hausdorff uniform space is compact then X is compact

(proof) Since closed subset of compact space is compact if E is compact then the family of all nonempty compact subsets of E is just X. Therefor by theorem 3, X is complete. And according to Lemm 1, if E is compact then E is totally bounded. Hence by Lemma 1, X is complete and totally bounded iff X is Compact.

References

- I. J.L. Kelley. Geneeal Topology. New York Van Nostrand 1957.
- II. F. Hausdorff. Set theory 3ed. New York. CHelsea. 1962.
- M. C. Kuratowski Topologies, Volume 1, 3ed. Monogratje Matometyozne Warsaw 1952.
- W. A.P. Robertson and Wendy Robertson. "On the space of subsets of a uniform space" Proc, Amer. Math. Soc. Volume 12, 1961, p.3 21—p. 326.