The Mechanism to Oxidative Polymerization of N-Methyl-p-Aminophenol and Thermal Characteristics of the Polymer Formed

N-Methyl-p-Aminophenol의 酸化重合機構 및 生成重合體의 熱特性

  • Choi Kyu Suck (Department of Chemistry Engineering, College of Engineering, Hanyang University University)
  • 최규석 (漢陽大學校 工科大學 化學工學科)
  • Published : 1972.10.30

Abstract

N-Methyl-p-aminophenol was polymerized by oxidative couplng in the aqueous iron chelate solution in the presence of oxygen, and black precipitate of oligo-(N-methyl-p-aminophenol) was formed quantitatively. In this oxidative polymerization reaction, methyl group attached to N in the monomer was partly eliminated, and it was clarified by the infrared spectra from the fact that the absorption of ${\delta}\;asym\;CH_3\;1460\;cm^{-1}$ and ${\delta}\;sym\;CH_3\;1380\;cm^{-1}$ in acetone insoluble fraction was much weaker than that in acetone soluble fraction. From Thermo-gravimetric analysis, oligo-(N-methyl-p-aminophenol) showed about 40% weight loss at $600^{\circ}C$ and it was less heat-resistant than oligo (p-aminophenol) that methyl group was not contained. In pyrolysis of oligo-(N-methyl-p-aminophenol) in He atmosphere, monomer N-methyl-p-aminophenol and water were formed, and in the pyrolytic gases, $H_2,\;CO,\;CO_2$ were detected by gas chromatography. From the above facts, to the structural change on oligo-(N-methyl-p-aminophenol) when it was heat-treated, it was considered that original linear structure was partly degraded, and the most of the oligomer was to go in with melt polycondensation to form polymer, and heat-resistant cyclic structure was formed at a time.

N-methyl-p-aminophenol은, 酸素存在下, 철-킬레이트(Fe(III)-EDTA) 水溶液中에서 酸化重合하여 黑色의 Oligo-(N-methyl-p-aminophenol)을 定量的으로 生成한다. 이 酸化重合過程에서 單量體中의 N에 結合된 $CH_3$ group이 일부 脫離되는데, 이것은 oligo-(N-methyl-p-aminophenol)을 아세톤처리하여 얻은 아세톤 可溶部와 不溶部의 赤外線스펙트럼에서 ${\delta}\;asym\;CH_3\;1460\;cm^{-1}$${\delta}\;sym\;CH_3\;1380\;cm^{-1}$의 吸收가 候者의 경우 현저히 弱化된 것으로 明白하다. $N_2$氣流中에서 每分 $2^{\circ}C$의 上昇速度로 行한 TGA分析結果, $600^{\circ}C$에서 약 40%의 重量損傷을 나타내며, $CH_3$ 置換基가 없는 p-aminophenol보다 耐熱性이 떨어진다. 또한 이 生成올리고머의 He 氣流中에서 행한 熱分解反應에서의 生成物은 單量體인 N-methyl-p-aminophenol과 물이 確認되었고 分解가스로부터는 gas chromatography에서 $H_2,\;CO,\;CO_2$등이 確認되었다. 生成올리고머의 熱處理에서는 일부는 1次元的인 構造가 切斷되어 單量體로 分解되지만, 대부분은 melt polycondensation이 일어나 더 큰 重合體로 변함과 동시에 熱에 安定한 環式構造로 변하여 감이 確認되었다

Keywords

References

  1. 本誌 v.12 崔奎碩
  2. 本誌 v.12 崔奎碩
  3. 本誌 v.12 崔奎碩
  4. 日工化 v.72 崔奎碩;金子正夫;土田英俊;條原功
  5. Makromol. Chem. v.132 Eishun Tsuchida;Masao Kaneko;Yoshimi Kurimura
  6. 日工化 v.72 金子正夫;大村馨;初見降久;土田英俊;條原功;栗村芳實
  7. 漢陽大學校大學院 碩士學位論文集 韓敬錫;崔奎碩
  8. 漢陽大學校 産業科學硏究所 論文集 弟 1輯 崔奎碩;金鳳植