A Study on Combustion Reaction Mechanism of Korean Anthracites

國産無煙炭의 燃燒反應機構에 關한 硏究

  • Published : 1972.10.30

Abstract

The rate Constants and energies of activation for the Combustion reaction of Korean anthracites have obtained by DTA method using the following rate equation derived by authors. $K=\frac{C_3{\cdot}W_0}{{\Delta}H{\cdot}{\Delta}C{\cdot}M{\cdot}S_A}(\frac{dy}{dt}+A(y-y_3))$ The anthracites of various ranks were treated at the different temperatures in the furnace. The probable combustion reaction mechanisms have discussed with the results obtained by the X-ray diffraction method, IR spectroscophic analysis, and gas chromatography. By the intensity of d(002) Values, it was confirmed that a parts of the amorphous carbon was converted to graphite form by heat treatment. The appreciable amounts of CO gas were expelled in the combustion process and it appeared that a little amount of the gas came from the catalytic decomposition of anthracites, The functional groups such as -OH, -SH, -NH, $-CH_2-CH_3,$ -CO, -COC-. and polycondensed aromatic rings in anthracites have observed by IR spectrophotometric analysis.

DTA에 衣한 國産無煙炭의 燃燒反應過程을 速度論的으로 解析할 수 있는 아래의 關係式을 導出하였다. $K=\frac{C_3{\cdot}W_0}{{\Delta}H{\cdot}{\Delta}C{\cdot}M{\cdot}S_A}(\frac{dy}{dt}+A(y-y_3))$ 이 式을 利用하여 各炭種에 對한 活性化 energy값을 求한 結果 非黑鉛性炭種은 40Kcal/mole, 黑鉛性炭種은 45Kcal/mole로서 炭化度가 增加되면 活性化 energy값이 增加된다는 것을 알았다. 無煙炭을 空氣中에서 燃燒시킬때 溫度에 衣하여 d_{(002)}$ X-線回折强度가 점차적으로 커지는 現象으로부터 無煙産中의 一部가 層構造(黑鉛化)로 變化됨을 알았으며 이 變化된 層構造에 生成된 $CO_2$의 一部가 接觸分解되어 다시 CO로 환원됨을 알았다. 그리고 無煙炭의 反應性을 左右하는 活性基의 種類는 -OH, -SH, -NH, -$CH_2-CH_3,$ 및 -CO, -COC-, -COOH가 存在하며 IR 로서 炭化度를 測定할 수 있었다

Keywords

References

  1. J. Phys. Chem. v.62 E.S Freeman;B. Carroll
  2. J. Amer. Chem. Soc. v.72 H.J. Borchardt;F. Daniels
  3. J. Phys. Chem. v.63 A.V. Blumberg
  4. 日本化學會誌 v.81 和田梧朗
  5. Ing. Eng. Chem. Fundametals v.4 R.L. Reed;L. Weber;B.S. Gottfried
  6. Ing. Eng. Chem. Fundametals v.5 R.L. Reed;L. Weber;B.S. Gottfried
  7. J. Phys. Rad. v.13 J.L. Soul'e
  8. J. Earth. Sci. v.1 K. Nagasawa
  9. J. Amer. Chem. Soc. v.38 S.L. Boersma
  10. 燃料協會誌 v.44 吉村 太;光井信二
  11. 本會誌 v.11 黃正儀;孫武龍
  12. Anal, Chem. v.21 M.J. Vold
  13. I. E. C. v.26 A.L. Parker;H.C. Hottel
  14. I. E. C. v.28 A.L. Parker;H.C. Hottel
  15. Chem React Eng Levenspiel O.
  16. Mine and Quarry Eng. v.10 L.H. Berklhammer;S. Speil
  17. Silcate, Ind v.19 E.B. Allison
  18. 工業化學雜誌 v.69 山本明;九田道男
  19. 化學工學 v.7 柳榮鴻;田海秀
  20. 工業化學雜誌 v.66 久保煇一郞;白崎信一
  21. Acta Cryst. v.4 R.E. Franklin
  22. 石炭化學 舟阪 渡;榥川親雄
  23. J. Amer. Chem. Soc. v.73 J.P.Couglin
  24. 化學と工學 v.13 大坪義雄
  25. Fuel v.35 D.W. Van Krevelen;F.J. Huntjenz;H.N.M. Dormas
  26. J. Polymer. Sci. v.3;4 H.H.G. Jellinek
  27. 化學工學 v.3 南宮寔;柳中基
  28. 燃料協會誌 v.43 牧野光男;川名善男
  29. 工業化學雜誌 v.60 大谷衫郞
  30. J. Applied, Phys. v.13 J. Bisco;B.E. Warren
  31. Bull. Chem. Soc. Japan v.29 H. Akamatu(et al.)
  32. Coal Science D.W. Van Krevelen;J. Schuyer
  33. Anal, Chem. v.15 J.A.Radspinner;H.C. Howard
  34. コ一ルタ一ル v.6 舟阪 渡;榥山茂
  35. 燃料, 熱菅理工學(II) 宮川一郞;思田梧三郞