NOTES ON SUBMANIFOLDS OF CODIMENSION 2
IN ALMOST CONTACT MANIFOLD

By Un Kyu Kim

1. Introduction

Recently, D.E. Blair, G.D. Ludden and K. Yano [1] obtained the conditions
in order that the imbedded submanifold of codimension 2 in an almost complex
manifold be almost complex. On the other hand, K. Yano and S. Ishihara [2]
have shown that any invariant submanifold of codimension 2 in a contact Rie-
mannian manifold is also a contact Riemannian manifold. By analogous method
of [1] we obtain the conditions in order that the imbedded submanifold of codimen-
sion 2 of almost contact manifold be almost contact manifold. And also we

obtain some properties for the hypersurface of almost contact manifold.
2. Submanifelds of codimension 2 of almoest contact manifold
Let (¢, &, 7°,G) be an almost contact metric structure of a (2r#-+1)-dimensional
almoest contact manifold Mzn“, that is,
#=0,  ¢=-I+yef  7é=0,
GE.X=nX), 7=l G@X,pY)=6GX, V)7 X7 (¥,
where X and ¥ are vector fields on M° . Supppose that ¥ i an imbedded

submanifold of class € with unit normals C and D and induced metric g. Thus,
if B denote the differential of the imbedding and X and ¥ tangent vector fields

on Nzn_l, then
G(BX,BY)=g(X,Y), G(C,C)=1, G(D,D)=1,
G(C,D)=0, G(BX,C)=0, G(BX,D)=0.
It is easy to see that we can define a tensor field f of type (1,1), vector fields.
E, A and F, 1-forms 7, and @, and functions 4,3 and 7 on szl by
¢BX=BfX+n(X)C+a(X)D, E=BF+3C+rD
@1 @C=—BE-+2D J(X)=7n"(BX)
¢D=—BA-AC.

LEMMA 1. f,E, A F,q a,0.4, 5,7 satisfy
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(1) f2= —I+a@RA+7RE+IRF, (2) nf=50+Aa, (3) af=rd—rm,
@) 0f=—8n—ra, (5) f(F)=BE+7A, (6) n(F)=r, (7) aF=-34,

@®) FF)=1-F—7% (9) f(E)=—BF-24, (10) 7(B)=1-§"-2",
a1 a(B)=—gr, (12) J(E)=2r, (13) f(A)=—7F+AE, (14) 7(A)=—-78,

(15) aA=1-7"=2% (16) 6(A)=—25.

PROOF. Computing 9!52'BX we have
BF X -+1(fX)+a(fX) D-7(X)BE+ (X) D-a(X) BA-2(X)C
=—BX+6(X)BF+£0(X)C+yd(X)D.
Comparing tangential and normal parts we obtain (1), (2) and (3). Since ¢(fX)
=7 (BfX) =7 ($BX-n(X)C-a(X)D) = —n( X7 (C)— (X7’ (D), 7' (C)=G(§,C)=8
and 7' (D)=G(§, D)=y, we have (4). Similarly, computing ¢BF we got
BfF+7(F)C+a(F)D=BBE—§AD+ yBA-+riC.
Comparing tangential and normal parts we obtain (5), (6) and (7). Since J(F)
5 2 .
= (BF)=7(-pC—-rD)=1-8 -1, 0(E)=7'(BE)=7'(—¢C-+AD)=2y and §(A4)
=17/ (BA)=n'(—¢C+AC)=—128, we obtain (8),(12) and (16). From ¢°C and ¢.D
we obtain
9
—C+7/ (C)BF+7 (C)C+7 (C)yD= —BfE—7(E)C—wa(EYD—ABA—AC and
2
— D+ (D)BF+% (D)BC+7' (D) yD=—BfA—7(A)C— a(A)D+ABE— A D.
Similarly, comparing tangential and normal parts we have the remaining identities.

4l o
THEOREM 1. Let M (¢.8,7°.G) is an almost contact metric manifoid and let

2n—1 Zn+1
N7 is an imbedded submanifold of M~ . Then we have the following:
-1
(1) 5=0 and y==1if and only if N " kas an almost contact structure (fLE, 7.
- |
(2) B==+1 aend y=0 if and only if N ™" has an almost contact structure (f, A c)

(3) A is identically -1 or —1 if and only if Nzn_lkas an almost contact stucture
(f,F.d).
PROOF. (1) Suppose that =0 and y=+1. Then G(¢D, ¢D)=G(D,D)—7' (D)
'(D):1—7'2=0 and hence we have A=0 and A=0. From the lemma 1 we have
7(E)=1 and 6(F)=0, and hence we get F=0 from G(BF,BF)=G(¢BF,$BF)

+IF)ICF)=0. Thus we have f =—I+7®E, 7(E)=1, fE=—BF-1A=0 and

; g 2n—1
7f=0, that is, (f, E,7) is an almost contact structure on N .
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2n—1 .
Conversely, if (f, E,7) is an almost contact structure on N "%, that is, FE=0,

7f=0, nE=1 and f =—I+%RE, then 8 and A are all zero from (10) of lemma 1.
Since aRA-FRF is zero from lemma 1, we have a(A)A+d(A)F=a(A)A=

2 2
(1—7°)A=0. Therefore we find 1-7°=0 or A=0. If A=0, then a(A)=1—7=0
and hence y=:1.
(2) and (3) are proved similarly as (1).

REMARKS. (a) There does not exist a submanifold of codimension 2 such that
E=BF4+C or £&=BF+D for a non zero vector field F on it.

(b) A==1 is the necessary and sufficient condition in order that Nzﬂ_l be an
invariant submanifold. We obtain this by the similar method of the proof in [2].

A tensor field f of type (1,1) being of constant rank » such that fa-'rf:U is
called an f-structure of rank 7 [4].

THEOREM 2. The tensor f in (2,1) defines an f-structure if and only if A is

2n—1
identically £1 or & is a normnal vector ficld along N

2n—1
PROOF. If A is identically 1 or —1, then N has an almost contact structure.

; ; In—1
Hence the tensor f defines an f-structure. If £ is a normal vector along & 3

i 3
then we have F=0 in (2,1). Hence we get 0=0(F)=1-5 -7, O=n(F)=7A

and 0=a(F)=— A from lemma 1. Therefore we have the three cases for 3
and 7;

(1) B==%1, r=0, () 8=0, r==x1 (W) B0, 7#0.
In all cases, we can say that F=0 implies A=0. In cases (1) and (1) Nz,:—
always carries an almost contact structure from theorem 1. In case (I[), we have
E#0 and 470 from G(BE, BA)=G(¢C, $D)=—8r+#0. If E is proportional to 4
then f is of rank 2#—2 and if E is not proportional to A then fis of rank 2z2—3.

1

On the other hand if £ is a normal vector field along NEM_1 then we have f:sf'f
=0 from lemma 1. Conversely, it suffices to prove that A4 is not identically =1
and ¢ is not a normal vector field, then the tensor f is not an f-structure. Let
us consider the case $C=—BE, ¢D=—-BA and §=BF-+AC. where F is not a

3 - 2n—1 p
zero vector field and 5 is not zero on N e By remark (a) 8 is not +1. So f
is not an f-structure. This completes the proof of this theorem.

Now let us apply the Gauss-Weingarten equations
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V yB)=h(X,Y)C+k(X,Y)D,
(7 gxCO=—BHX+I(X)D,
(7 gxD)=—-BEX—-I(X)C,
where 22 and k2 are the second fundamental forms, # and K are the correspon-
ding Weingarten maps, / is the third fundamental form. Moreover, we now
assume that the ambient space M is cosymplectic, that is, ¢ and %" are covariant

constant with respect to the Riemannian connection of G. Thus we have
7 gx@BY =—h(X,Y)BE+h(X,Y)AD-k(X,Y)BA—k(X,Y)IC+QBY ¥

On the other hand,
7 pxpBY = [ py(BfY - (¥ )C+a(Y )D)=h(X, fY)C+k(X, fy)D+BW y)Y
+BfV 3Y + (7 yd X IC+7(F (¥ )C+n(¥ )(— BHX +I(X)D)
(Vo)X )D+a(V ¥ ) D+a(Y)(~ BEX—1(X)C).

Therefore, using (2,1) and comparing tangential part we have
22 WX, VDE-k(X,V)A=W )Y - ¥ )HX —a(Y)KX.

2,
For the induced metric ¢ on N """ we have the following

LEMMA 2, g(X,¥Y)=g(fX,f¥)+n(Xn¥)+a(X a(Y)+0(X)FX)
X, fY)=—g(fX,Y)+d(X)g(fX, F)+n(X)i¥)+ra(X)d(¥)
7 X)=g(X,E)—-0(X)g(E, F)+rAd(X)
a(X)=g(X, A)—d(X)g(F, A)—pAd(X).

2n—1 2n+1
THEOREM 3. Let N©° be a submanifold of a cosymplectic manifold M = s I

A#Z+1 and B=y=0, then f is covariant consiant if and only if k and k have the
Jollowing forms
h=08n+0,(a@n+7Ra)+0.0Ra,

k=0.08n+03(a@n+nRa)+0,0Ra,
where (1—A° 0, =h(E, E), (1-1) 0,=h(E, A)=k(E, E)
A-2"0,=h(A, D=k, E), (1-1)o=k(A A)

PROOF. It is easily proved by the same method as the theorem 1.7 of [1].
3. Hypersurfaces of almost contact manifold

Let M(,&,7,G) be a (2r+1)—dimensional almost contact metric manifold
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M. Now let N be an imbedded hypersurface with unit normal C and let B
denote the differential of the imbedding. Define a tensor field f of type (1,1),
vector fields £ and 4, 1-forms 7, a and a function 2 by
¢BX=BfX+n(X)C, E=BF+IC,
¢pC=—BE a(X)=n"(BX).
Then we have
fr=—I+1RE+aR4, nf=la, af=—2n, fE=—24,
FA=2E, n(E)=1-2, a(E)=0, n()=0, a(D=1-% [1],
where 7 is the identity transformation.
We assume that a global vector field V' exists which satisfies 7(¥)=0and V0

O
on N . If we put —};(-BV+C) =N for some nonzero scalar field o, then N is
an affine normal and we have ¢N=—BU for some vector field U on N?'".
Therefore we have U:% f¥+E], C=BV+pN.

2 2
Since f =—T+7RE+aRA, rg(fU)=?}(-llé- If V—i—fE]):O. Hence we have

0BX=BfX+n(X)C=BfX+n(X) [BV+9oN]=B(f+nEV)X +on(X)N,
that is, ¢BX=BfX)+5(X)N, where f=f+n2V and 7=pn.

‘Thus, _72: — I+ aRA+72U +(5f )&V Therefore we have

Fl) =X a(X) A-F(OU -7 FXV - a(X) A+a(X)a( D A+7(Xal) A
+(fXDa(V)A =7 (X0OU+a(X)5(ADU+H(X)FOU+n(fXDa(V)A
— XV +a (O FAVTEXOGUIV +7(fXmUfVIV.
From 7#(X)aU)A=a(X)F( AU =7(fXFV) U=H(XM(FUIV=0 and a(X)a(4A)4

U XaVIA +FCEOTUIU +a XAV +XOmfVIV = 1- 2+ (V)2 F(X)
+ [I—ZE—I-a(V)Z] X, we have
PO+ 1+ = 2aWNF X +@-2a@)=0, that is, (F+DF+@
— (V)] =0.
Hence we get the following

7 2n4-1
THEOREM 4. Let N be a hypersurface of almost contact manifold M ¥ . for

. . 2
an arbitrary global nonzero vector field V such that n(V)=0, if A —Aa(V)=1,
then f =f+nXV is an almost complex structure.
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