POSNER'S THEOREM ON PI RINGS

By Kevin McCrimmon

In [1] S.A. Amitsur showed that a ring without zero divisors which satisfies a polynomial identity has a two-sided ring of quotients which is a division ring of finite dimension over its center. This was extende by E.C. Posner [7] to arbitrary prime PI rings:

THEOREM. If R is a prime ring satisfying a polynomial identity then R has a two-sided ring of quotients Q which is a simple finite-dimensional algebra over its center.

Alternate proofs have been given by W. A. Martindale [6], I.N. Herstein [5], and A. W. Goldie [4]. In this note we offer an elementary proof using nothing more than the Density Theorem (see [5, p. 41]).

We assume R is an algebra over some commutative ring Ω satifying a monic polynomial identity of degree d with coefficients in Ω , which we may take to be multilinear of the form

$$p(x_1, \cdots, x_d) = x_d \cdots x_1 + \sum_{\sigma \neq 1} \alpha_{\sigma} x_{\sigma(d)} \cdots x_{\sigma(1)}.$$

Thus we assume $p(r_1, \dots, r_d) = 0$ for all $r_1, \dots, r_d \in \mathbb{R}$. A uniqueness sequence of length n in \mathbb{R} relative to a representation of \mathbb{R} on a (right) Ω -module M is a sequence $r_1, \dots r_n$, of elements in \mathbb{R} such that for some $m \in M$ we have $r_n \cdots r_1(m)$ $\neq 0$ but $r_{\sigma(n)} \cdots r_{\sigma(1)}(m) = 0$ for any other permutation $\sigma \neq 1$. Clearly if \mathbb{R} satisfies the polynomial identity $p(x_1, \dots, x_d)$ of degree d there can be no uniqueness sequences of length d in \mathbb{R} . There is a standard process, due to Amitsur [2, p. 102– 103], for constructing uniqueness sequences.

LEMMA. If an algebra A has a representation on a (right) vector space V over a field Ω such that

(*) for every subspace $W \subset V$ of dimension $\leq d$ and for every $v \notin W$ there exists an element $a \in A$ with a(W) = 0 $a(v) \notin W + v\Omega$

then there exists a uniqueness sequence in A of length d.

We make no attempt to improve on the demonstration [7, p. 180; 5, p. 184] that a prime PI ring R is a right and left Goldie ring, hence has a two-sided

Kevin McCrimmon

ring of quotients Q of the form $Q = End_D(V) \cong D_n$ for V an *n*-dimensional right vector space over the division ring D. The difficult part is to show finite-dimensionality of Q (or D) over its center ϕ .

Let Ω be a maximal subfield of D, and let ω_r denote right multiplication on Vby the scalar $\omega \in \Omega$. Then $A = R\Omega_r$ is a left (and right) pre-order in $B = Q\Omega_r$ in the sense that every $b \in B$ may be written $b = c^{-1}a$ (or ac^{-1}) for some a, $c\epsilon A$. (Indeed, if $\sum b = q_i \omega_i$ for $q_i \epsilon Q$, $\omega_i \epsilon \Omega$, then we know $q_i = r^{-1}r_i$ for some r, r_i $\in R \subset A$ since R is a two-sided order in Q. hence $b = c^{-1}a$ for c = r, $a = \sum r_i \omega_i \in A$). Here B is a dense ring of linear transformations on the right vector space Vover Ω : B acts irreducibly on V since Q already does, and its centralizer consists of those scalar multiplications d_r ($d \in D$) which commutes with all ω_r , and since Ω is maximal this means $d \in \Omega$. Furthermore, since Ω_r commutes with R, A will satisfy any multilinear polynomial identity that R does. Therefore A satisfies $p(x_1, \dots, x_d)$, so A has no uniequeness sequences of length d. By the lemma, (*) must be violated for some finite-dimensional subspace W and some $v \notin W$: whenever $a \in A$ satisfies a(W) = 0 then necessarily $a(v) \in W + v\Omega$.

We first find a nonzero finite-dimensional subspace V_0 which is invariant under A. If V itself is finite-dimensional we take $V_0=V$, whereas if V is not finite-dimensional then certainly $W+v\Omega$ is not all of V, hence by the density of B on V there exists $b \in B$ with b(W)=0 and $b(v) \notin W+v\Omega$ (in particular, $b(v) \neq 0$). Since A is a left pre-order in B we can write $b=c^{-1} a_0$ for c, $a_0 \in A$. Then any element $a \in Aa_0 \subset A$ annihilates W since b does, $a(W) \subset Aa_0(W) = Acb(W) = 0$; therefore by choice of W and v we cannot have $a(v) \notin W+v\Omega$, so we must have $a(v) \in W+v\Omega$ for all $a \in Aa_0$. But $v_0=a_0(v)=cb(v)$ is nonzero since c is invertible and $b(v) \neq 0$, so $V_0=A(v_0)$ is a nonzero subspace invariant under A which is finite dimensional since $V_0=A(v_0)=Aa_0(v) \subset W+v\Omega$.

We now show the only such invariant subspace is $V_0 = V$. This will follow from the following simple observation.

LEMMA. If A is a right pre-order in a dense ring B of linear transformations on V over a field Ω , then the only finite-dimensional subspaces of V invariant under A are V and 0.

PROOF. Suppose V_0 is invariant and finite-dimensional. If $V_0 \neq 0$, V then by

density there is a $b \in B$ with $b(V_0) \subset V_0$. Since A is a right pre-order in B we can write $b = ac^{-1}$ for a, $c \in A$. But for invertible c, $c(V_0) \subset V_0$ implies $c(V_0) = V_0 = c^{-1}$ (V_0) by the finite-dimensionality of V_0 , and thus $b(V_0) = ac^{-1}(V_0) = a(V_0) \subset V_0$, a contradiction.

Thus $V = V_0$ is finite-dimensional over Ω , and $B = \operatorname{End}_{\Omega}(V)$ (by density) is also finite-dimensional over Ω . Now $B = Q\Omega_r$ is a nonzero homomorphic image of the central simple algebra $Q \otimes_{\phi} \Omega$ over Ω , so the homomorphism must be an isomorphism of Ω -algebras and dim ${}_{\phi}Q = \dim_{\Omega}Q \otimes_{\phi}\Omega = \dim_{\Omega}B < \infty$.

4

REMARK. We note in passing that the Faith-Utumi Theorem [3, p. 57] says that our given order R has $E_n \subset R \subset D_n$ for some two-sided order E in D, E is a PI ring (as a copy Ee_{11} of E sits inside R), and it is without zero divizors (clearly), so by Amitsur's original result the ring of quotients D is finite-dimensional over its center. Thus Amitsur implies Posner with the help of Faith and Utumi.

University of Virginia

BIBLIOGRAPHY

- [1] S.A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470.
- [2] S.A. Amitsur, Rings with involution, Israel J. Math. 7(1969) 63-68.
- [3] C. Faith and Y. Utumi, On Noetherian prime rings, Trans. Amer. Math. Soc. 114 (1965), 53-60.
- [4] A. W. Goldie, A note on prime rings with polynomial identities, J. London Math. Soc.
 (2) 1 (1969), 606-608.
- [5] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs No 15, Math. Assoc of America.
- [6] W. A. Martindale, Prime rings satifying a generalized polynomial identity, J. of Algebra 12 (1969), 576-584.
- [7] E.C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-184.