POSNER'S THEOREM ON PI RINGS

By Kevin McCrimmon

In [1] S. A. Amitsur showed that a ring without zero divisors which satisfies a polynomial identity has a two-sided ring of quotients which is a division ring of finite dimension over its center. This was extened by E.C. Posner [7] to arbitrary prime PI rings:

THEOREM. If R is a prime ring satisfying a polynomial identity then R has a two-sided ring of quotients Q which is a simple finite-dimensional algebra over its center.

Alternate proofs have been given by W. A. Martindale [6]. I. N. Herstein [5], and A. W. Goldie [4]. In this note we offer an elementary proof using nothing more than the Density Theorem (see [5, p. 41]).

We assume R is an algebra over some commutative ring Ω satifying a monic polynomial identity of degree d with coefficients in Ω, which we may take to be multilinear of the form

$$
p\left(x_{1}, \cdots, x_{d}\right)=x_{d} \cdots x_{1}+\sum_{\sigma \neq 1} \alpha_{\sigma} x_{\sigma(d)} \cdots x_{\sigma(1)}
$$

Thus we assume $p\left(r_{1}, \cdots, r_{d}\right)=0$ for all $r_{1}, \cdots, r_{d} \in R$. A uniqueness sequence of length n in R relative to a representation of R on a (right) Ω-module M is a sequence $r_{1}, \cdots r_{n}$, of elements in R such that for some $m \in M$ we have $r_{n} \cdots r_{1}(m)$ $\neq 0$ but $r_{\sigma(n)} \cdots r_{\sigma(1)}(m)=0$ for any other permutation $\sigma \neq 1$. Clearly if R satisfies the polynomial identity $p\left(x_{1}, \cdots, x_{d}\right)$ of degree d there can be no uniqueness sequences of length d in R. There is a standard process, due to Amitsur [2, p.102103], for constructing uniqueness sequences.

LEMMA. If an algebra A has a representation on a (right) vector space V over a field Ω such that
(*) for every subspace $W \subset V$ of dimension $<d$ and for every $v \notin W$ there exists an element $a \in A$ with $a(W)=0 a(v) \notin W+v \Omega$
then there exists a uniqueness sequence in A of length d.
We make no attempt to improve on the demonstration [7, p. 180;5, p. 184] that a prime PI ring R is a right and left Goldie ring, hence has a two-sided
ring of quotients Q of the form $Q=E n d_{D}(V) \cong D_{n}$ for V an n-dimensional right vector space over the division ring D. The difficult part is to show finite-dimensionality of Q (or D) over its center ϕ.

Let Ω be a maximal subfield of D, and let ω_{r} denote right multiplication on V by the scalar $\omega \in \Omega$. Then $A=R \Omega_{r}$ is a left (and right) pre-order in $B=Q \Omega_{r}$ in the sense that every $b \in B$ may be written $b=c^{-1} a$ (or $a c^{-1}$) for some $a, c \in A$. (Indeed, if $\sum b=q_{i} \omega_{i}$ for $q_{i} \in Q, \omega_{i} \in \Omega$, then we know $q_{i}=r^{-1} r_{i}$ for some r, r_{i} $\in R \subset A$ since R is a two-sided order in Q. hence $b=c^{-1} a$ for $c=r, a=\sum r_{i} \omega_{i} \in A$). Here B is a dense ring of linear transformations on the right vector space V over Ω : B acts irreducibly on V since Q already does, and its centralizer consists of those scalar multiplications $d_{r}(d \in D)$ which commutes with all ω_{r}, and since Ω is maximal this means $\mathrm{d} \in \Omega$. Furthermore, since Ω_{r} commutes with R, A will satisfy any multilinear polynomial identity that R does. Therefore A satisfies $p\left(x_{1}, \cdots \cdots, x_{d}\right)$, so A has no unieqeness sequences of length d. By the lemma, (*) must be violated for some finite-dimensional subspace W and some $v \notin W$: whenever $a \in A$ satisfies $a(W)=0$ then necessarily $a(v) \in W+v \Omega$.

We first find a nonzero finite-dimensional subspace V_{0} which is invariant under A. If V itself is finite-dimensional we take $V_{0}=V$, whereas if V is not finite-dimensional then certainly $W+v \Omega$ is not all of V, hence by the density of B on V there exists $b \in B$ with $b(W)=0$ and $b(v) \notin W+v \Omega$ (in particular, $b(v) \neq 0$). Since A is a left pre-order in B we can write $b=c^{-1} a_{0}$ for $c, a_{0} \in A$. Then any element $a \in A a_{0} \subset A$ annihilates W since b does, $a(W) \subset A a_{0}(W)=A c b(W)=0$; therefore by choice of W and v we cannot have $a(v) \notin W+v \Omega$, so we must have $a(v) \in W+v \Omega$ for all $a \in A a_{0}$. But $v_{0}=a_{0}(v)=c b(v)$ is nenzero since c is invertible and $b(v) \neq 0$, so $V_{0}=A\left(v_{0}\right)$ is a nonzero subspace invariant under A which is finite dimensional since $V_{0}=A\left(v_{0}\right)=A a_{0}(v) \subset W+v \Omega$.

We now show the only such invariant subspace is $V_{0}=V$. This will follow from the following simple observation.

LEMMA. IfA is a right pre-order in a dense ring B of linear transformations on V over a field Ω, then the only finite-dinensional subspaces of V invariant under A are V and 0.

PROOF. Suppose V_{0} is invariant and finite-dimensional. If $V_{0} \neq 0, V$ then by
density there is a $b \in B$ with $b\left(V_{0}\right) \nsubseteq V_{0}$. Since A is a right pre-order in B we can write $b=a c^{-1}$ for $a, c \in A$. But for invertible $c, c\left(V_{0}\right) \subset V_{0}$ implies $c\left(V_{0}\right)=V_{0}=c^{-1}$ $\left(V_{0}\right)$ by the finite-dimensionality of V_{0}, and thus $b\left(V_{0}\right)=a c^{-1}\left(V_{0}\right)=a\left(V_{0}\right) \subset V_{0}$, a contradiction.

Thus $V=V_{0}$ is finite-dimensional over Ω, and $B=\operatorname{End}_{\Omega}(V)$ (by density) is also finite-dimensional over Ω. Now $B=Q \Omega_{r}$ is a nonzero homomorphic image of the * central simple algebra $Q \otimes_{\Phi} \Omega$ over Ω, so the homomorphism must be an isomorphism of Ω-algebras and $\operatorname{dim} \varnothing_{\varnothing} Q=\operatorname{dim}_{\Omega} Q \otimes_{\Phi} \Omega=\operatorname{dim}_{\Omega} B<\infty$.

REMARK. We note in passing that the Faith-Utumi Theorem [3, p. 57] says that our given order R has $E_{n} \subset R \subset D_{n}$ for some two-sided order E in $D . E$ is a $P I$ ring (as a copy $E e_{11}$ of E sits inside R), and it is without zero divizors (clearly), so by Amitsur's original result the ring of quotients D is finite-dimensional over its center. Thus Amitsur implies Posner with the help of Faith and Utumi.

University of Virginia

BIBLIOGRAPHY

[1] S. A. Amitsur, On rings with identities, J. London Math. Soc. 30 (1955), 464-470.
[2] S. A. Amitsur, Rings with involntion, Israel J. Math. 7(1969) 63-68.
[3] C. Faith and Y. Utumi, On Noetherian prime rings, Trans. Amer. Math. Soc. 114 (1965), 53-60.
[4] A. W. Goldie, A note on prime rings with polynomial identities, J. London Math. Soc. (2) 1 (1969), 606-608.
[5] I.N. Herstein, Noncommntative rings, Carus Mathematical Monographs No 15, Math. Assoc of America.
[6] W.A. Martindale, Prime rings satifying a generalized polynomial identity, J. of Algebra 12 (1969), 576-584.
[7] E. C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-184.

