A NOTE ON MATSUSHIMA FORMULA OF DISCRETE UNIFORM SUBGROUPS OF SEMISIMPLE LIE GROUPS

By Su-Shing Chen

1. Introduction.

Let G be a connected semisimple Lie group with finite center and K be a maximal compact subgroup of G. Then X=G/K is a Riemannian symmetric space. Let Γ be a discrete uniform subgroup of G, that is, the quotient space $\Gamma \setminus X$ is compact. Let \mathcal{G} be the Lie algebra of left invariant vector fields on G and \mathcal{K} the subalgebra of \mathcal{G} corresponding to K such that $\mathcal{G} = \mathcal{K} \oplus \mathbb{M}$ with respect to the killing form on G. In [4], Y. Matsushima has obtained an interesting formula for the Betti numbers of $\Gamma \setminus X$ in terms of multiplicities of certain irreducible unitary representations of G in $L^2(\Gamma \setminus G)$. Our purpose is to give an analogous formula for the dimension of the cohomology group $H^p(\Gamma, X, \rho), p \ge 1$, with respect to an arbitrary representation ρ of G in a finite dimensional complex vector space F. When G=SL(2, R), I.M. Gelfand conjectured in [2] that the decomposition of $L^2(\Gamma \setminus G)$ shall give a complete set of invariants for the moduli problem of compact Riemann surfaces. Here, as a consequence of the dimension formula of $H^{p}(\Gamma, X, \rho)$, we observe that only the irreducible unitary representation of the discrete series of index 4 is essential to $H^1(\Gamma, G)$ (see [5]). In fact, the representation space of the discrete series of index 4 is the space of quadratic differentials in [1]. We shall follow the notation and terminology of [3] and [4].

2. The dimension formula of $H^p(\Gamma, X, \rho)$ $(p \ge l)$.

Let $A^{p}(\Gamma, X, \rho)$ and $A^{p}(\Gamma \setminus G, K, \rho)$ be the space of *F*-valued *p*-forms on manifolds *X* and $\Gamma \setminus G$ defined in [4]. To each element $\eta \in A^{p}(\Gamma, X, \rho)$, there corresponds an element $\eta^{\circ} \in A^{p}(\Gamma \setminus G, K, \rho)$ in a one to one way. Each element $\eta^{\circ} \in A^{p}(\Gamma \setminus G, K, \rho)$ can be expressed as

$$\eta^{\circ} = \frac{1}{p!} \sum_{\lambda_1,\ldots,\lambda_s=1}^n \eta_{\lambda_1,\ldots,\lambda_s} w^{\lambda_1} \wedge \cdots \wedge w^{\lambda_s},$$

where $\eta_{\lambda_1...\lambda_p} = \eta^{\circ}(X_{\lambda_1}...X_{\lambda_p})$, $1 \le \lambda_1 < \dots < \lambda_p \le n$, for a particularly chosen basis

Su-Shing Chen

 $\{X_1, \dots, X_n\}$ of \mathcal{G} and its dual basis $\{w^1, \dots, w^n\}$ (see [4]). Thus, η° can be regarded as an $(F \otimes A^p \mathfrak{M}^*)$ -valued function on $\Gamma \setminus G$, where $A^p \mathfrak{M}^*$ is the p^{th} exterior product of the dual space \mathfrak{M}^* of \mathfrak{M} . The fundamental result in [4] is that every cohomology class in $H^p(\Gamma, X, \rho)$ is represented by a unique harmonic *p*-form η in $A^p(\Gamma, X, \rho)$, that is,

$$(2.1) \ (\Delta \eta)_{\lambda_1 \dots \lambda_p} = (-C + \rho(C))\eta_{\lambda_1 \dots \lambda_p}, \ p \ge 1, \ 1 \le \lambda_1 < \dots < \lambda_p \le n,$$

where C is the Casimir operator and $\rho(C)$ is the Casimir operator of ρ . In particular, if ρ is irreducible, (2.1) becomes $C\eta_{\lambda_1...\lambda_p} = \lambda_\rho \eta_{\lambda_1...\lambda_p}$, where λ_ρ is a constant.

The complex vector space F may be decomposed into a direct sum of irreducible G-submodules $F^{(1)}, \dots, F^{(t)}$ such that $\rho = \rho^{(1)} \oplus \dots \oplus \rho^{(t)}$. Further, we let $F^{(i)} = S_1^{(i)}$ $\bigoplus \cdots \bigoplus S_{mi}^{(i)} \text{ (resp. } \Lambda^{p} \mathfrak{M}^{*} = V_{1}^{*} \oplus \cdots \oplus V_{S_{p}}^{*} \text{) be a decomposition of } F^{(i)} \text{ (resp. } \Lambda^{p} \mathfrak{M}^{*} \text{) into direct sum of } K\text{-submodules so that } \rho^{(i)} | K = \rho^{(i)} \oplus \cdots \oplus \rho_{m_{i}}^{(i)} \text{ and } Ad^{p*} = \tau_{1}^{p^{*}} \oplus \cdots \oplus \tau_{S_{p}}^{p^{*}},$ where Ad^{p^*} is the representation of K on $A^p \mathfrak{M}^*$ induced by the adjoint representation Ad of K on M. We have $F \otimes \Lambda^p \mathfrak{M}^* = \sum_{i,h,j} S_h^{(i)} \otimes V_j^*$. Let $P_{hj}^{(i)}$ be the projection of $F \otimes A^p \mathfrak{M}^*$ onto the direct factor $S_h^{(i)} \otimes V_j^*$. Then $P_{hj}^{(i)}$ commutes with $(\rho \otimes Ad^{p^*})$ (k), for all $k \in K$, and the Laplacian Δ . Consequently, if $\eta \in A^p(\Gamma, X, \rho)$ is harmonic, $P_{hj}^{(i)}$ η is also harmonic. We easily get dim $H^{p}(\Gamma, X, \rho) = \sum_{i=1}^{l} \dim H^{p}(\Gamma, X, \rho)$ $\rho^{(i)}$). Let T be an irreducible unitary representation of G in a Hilbert space H and let N(T) be the multiplicity of T in $L^2(\Gamma \setminus G)$. T_K denotes the restriction of T to K and $M(T_K;\tau)$ denotes the multiplicity in T_K of an irreducible representation τ of K. The domain of the Casimir operator T(C) of T is a dense subspace of H. If T is nontrivial and irreducible, T(C) is a scalar λ_r -multiple of the identity transformation of the domain of T(C). The set of irreducible unitary representations T of G such that $\lambda_T = \lambda_{\rho}(i)$ is denoted by $D_{\rho}(i)$. A quite simple modification of the proof in [3] implies

dim
$$H^{\rho}(\Gamma, X, \rho^{(i)}) = \sum_{T \in D_{\rho}(i)} N(T) \Big[\sum_{h=1}^{m_i} \sum_{j=1}^{S_{\rho}} M(T_K; \rho_h^{(i)} \otimes \tau_j^{\rho^*}) \Big].$$

Matsushima Formula of Discrete Uniform Subgroups of Semisimple Lie Groups

Consequently, the dimension formula of $H^{p}(\Gamma, X, \rho)$ is given by

dim
$$H^{p}(\Gamma, X, \rho) = \sum_{i=1}^{t} \sum_{T \in D_{\rho}(i)} N(T) \left[\sum_{h=1}^{mi} \sum_{j=1}^{S_{i}} M(T_{K}; \rho_{h}^{(i)} \otimes \tau_{j}^{p^{*}}) \right].$$

University of Florida

43

REFERENCES

- L. Bers, On moduli of Riemann Surfaces, Lectures at Forschunginstitut f
 ür Mathematik, Eidgenössische Technische Hochschule, Z
 ürich, 1964.
- [2] I. M. Gelfand, Automorphic functions and the theory of representation, Proceedings of the International Congress of Mathematicians, 1962.
- [3] Y. Matsushima, A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, Journal of Differential Geometry, 1 (1967) 99-109.
- [4] Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Annals of Mathematics, 78(1963), 365-416.
- [5] A. Weil, Remarks on the cohomology of groups, Annals of Mathematics, 80(1964), 149--157.