A NOTE ON MATSUSHIMA FORMULA OF DISCRETE UNIFORM SUBGROUPS OF SEMISIMPLE LIE GROUPS

By Su-Shing Chen

1. Introduction.

Let G be a connected semisimple Lie group with finite center and K be a maximal ccmpact subgroup of G. Then $X=G / K$ is a Riemannian symmetric space. Let Γ be a discrete uniform subgroup of G, that is, the quotient space $\Gamma \backslash X$ is compact. Let \mathscr{G} be the Lie algebra of left invariant vector fields on G and \mathscr{K} the subalgebra of \mathscr{G} corresponding to K such that $\mathscr{G}=\mathscr{K} \oplus \mathfrak{M}$ with respect to the killing form on \mathscr{G}. In [4], \boldsymbol{Y}. Matsushima has obtained an interesting formula for the Betti numbers of $\Gamma \backslash X$ in terms of multplicities of certain irreducible unitary representations of G in $L^{2}(\Gamma \backslash G)$. Our purpose is to give an analogous formula for the dimension of the cohomology group $H^{p}(\Gamma, X, \rho), p \geq 1$, with respect to an arbitrary representation ρ of G in a finite dimensional complex vector space F. When $G=S L(2, R)$, I.M. Gelfand conjectured in [2] that the decomposition of $L^{2}(\Gamma \backslash G)$ shall give a complete set of invariants for the moduli problem of compact Riemann surfaces. Here, as a consequence of the dimension formula of $H^{p}(\Gamma, X, \rho)$, we observe that only the irreducible unitary representation of the discrete series of index 4 is essential to $H^{1}(\Gamma, \mathrm{G})$ (see [5]). In fact, the representation space of the discrete series of index 4 is the space of quadratic differentials in [1]. We shall follow the notation and terminology of [3] and [4].

2. The dimension formula of $H^{p}(\Gamma, X, \rho)(p \geq l)$.

Let $A^{p}(\Gamma, X, \rho)$ and $A^{p}(\Gamma \backslash G, K, \rho)$ be the space of F-valued p-forms on manifolds X and $\Gamma \backslash G$ defined in [4]. To each element $\eta \in A^{p}(\Gamma, X, \rho)$, there corres ponds an element $\eta^{\circ} \in A^{p}(\Gamma \backslash G, K, \rho)$ in a one to one way. Each element $\eta^{\circ} \in$ $A^{\dagger}(\Gamma \backslash G, K, \rho)$ can be expressed as

$$
\eta^{\circ}=\frac{1}{p!} \lambda_{1} \sum_{\cdots \cdots \lambda_{2}=1}^{n} \eta_{\lambda_{1} \cdots \lambda_{2},} w^{\lambda_{1}} \wedge \cdots \wedge w^{\lambda_{1}},
$$

where $\eta_{\lambda_{1} \cdots \lambda_{,}}=\eta^{\circ}\left(X_{\lambda_{1}} \cdots X_{\lambda_{2}}\right), \quad 1 \leq \lambda_{1}<\cdots<\lambda_{p} \leq n$, for a particularly chosen basis
$\left\{X_{1}, \cdots, X_{n}\right\}$ of \mathscr{G} and its dual basis $\left\{w^{1}, \cdots, w^{n}\right\}$ (see [4]). Thus, η° can be regarded as an $\left(F \otimes \Lambda^{{ }_{\mathfrak{M}}}\right.$ * $)$-valued function on $\Gamma \backslash G$, where $\Lambda^{{ }^{\mathfrak{M}}} \mathfrak{N}^{*}$ is the $p^{\text {th }}$ exterior product of the dual space \mathbb{M}^{*} of \mathfrak{M}. The fundamental result in [4] is that every cohomology class in $H^{p}(\Gamma, X, \rho)$ is represented by a unique harmonic p-form η in $A^{\hat{p}}(\Gamma, X, \rho)$, that is,

$$
\begin{equation*}
(\Delta \eta)_{\lambda_{1} \cdots \lambda_{2}}=(-C+\rho(C)) \eta_{\lambda_{1} \cdots \lambda_{p}}, p \geq 1, \quad 1 \leq \lambda_{1}<\cdots<\lambda_{p} \leq n, \tag{2.1}
\end{equation*}
$$

where C is the Casimir operator and $\rho(C)$ is the Casimir operator of ρ. In particular, if ρ is irreducible, (2.1) becomes $C \eta_{\lambda_{1} \cdots \lambda_{,}}=\lambda_{\rho} \eta_{\lambda_{1} \cdots \lambda_{,}}$, where λ_{p} is a constant.

The complex vector space F may be decomposed into a direct sum of irreducible G-submodules $F^{(1)}, \cdots, F^{(t)}$ such that $\rho=\rho^{(1)} \oplus \cdots \oplus \rho^{(t)}$. Further, we let $F^{(i)}=S_{1}^{(i)}$ $\oplus \cdots \oplus S_{m i}^{(i)}$ (resp. $\Lambda^{p_{M}} \mathfrak{R}^{*}=V_{1}^{*} \oplus \cdots \oplus V_{S}^{*}$) be a decomposition of $F^{(i)}$ (resp. $\Lambda^{p} M^{*}$) intc direct sum of K-submodules so that $\rho^{(i)} \mid K=\rho^{(i)} \oplus \cdots \oplus \rho_{m_{i}}^{(i)}$ and $A d^{p^{*}}=\tau_{1}^{\rho^{*}} \oplus \cdots \oplus \tau_{S^{*}}$, where $A d^{p^{*}}$ is the representation of K on $\Lambda^{p} \mathbb{M}^{*}$ induced by the adjoint representation $A d$ of K on \mathfrak{M}. We have $F \otimes A^{p_{\mathfrak{M}}}{ }^{*}=\sum_{i, h, j} S_{h}^{(i)} \otimes V_{j}^{*}$. Let $P_{h j}^{(i)}$ be the projection of $F \otimes A^{p_{P^{2}}}$ onto the direct factor $S_{h}^{(i)} \otimes V_{j}^{*}$. Then $P_{h j}^{(i)}$ commutes with $\left(\rho \otimes A d^{p^{*}}\right)$ (k), for all $k \in K$, and the Laplacian Δ. Consequently. if $\eta \in A^{p}(\Gamma, X, \rho)$ is harmonic, $P_{h j}^{(i)} \eta$ is also harmonic. We easily get $\operatorname{dim} H^{p}(\Gamma, X, \rho)=\sum_{i=1}^{t} \operatorname{dim} H^{p}(\Gamma, X$, $\left.\rho^{(i)}\right)$. Let T be an irreducible unitary representation of G in a Hilbert space H and let $N(T)$ be the multiplicity of T in $L^{2}(\Gamma \backslash G) . T_{K}$ denotes the restriction of T to K and $M\left(T_{K} ; \tau\right)$ denotes the multiplicity in T_{K} of an irreducible representation τ of K. The domain of the Casimir operator $T(C)$ of T is a dense subspace of H. If T is nontrivial and irreducible, $T(\mathrm{C})$ is a scalar λ_{τ}-multiple of the identity transformation of the domain of $T(C)$. The set of irreducible unitary representations T of G such that $\lambda_{T}=\lambda_{\rho}(i)$ is denoted by $D_{\rho}(i)$. A quite simple modification of the proof in [3] implies

$$
\operatorname{dim} H^{p}\left(\Gamma, X, \rho^{(i)}\right)=\sum_{T \in D_{\rho(i)}} N(T)\left[\sum_{h=1}^{m_{i}} \sum_{j=1}^{S_{1}} M\left(T_{K} ; \rho_{h}^{(i)} \otimes \tau_{j}^{\rho^{*}}\right)\right]
$$

Consequently, the dimension formula of $H^{p}(\Gamma, X, \rho)$ is given by

$$
\operatorname{dim} H^{p}(\Gamma, X, \rho)=\sum_{i=1}^{t} \sum_{T \in D_{\rho}(i)} N(T)\left[\sum_{h=1}^{m i} \sum_{j=1}^{S_{j}} M\left(T_{K} ; \rho_{h}^{(i)} \otimes \tau_{j}^{p^{*}}\right)\right] .
$$

University of Florida

REFERENCES

[1] L. Bers, On moduli of Riemann Surfaces, Lectures at Forschunginstitut für Mathematik, Eidgenössische Technische Hochschule, Zürich, 1964.
[2] I. M. Gelfand, Automorphic functions and the theory of representation, Proceedings of the International Congress of Mathematicians, 1962.
[3] Y. Matsushima, A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, Journal of Differential Geometry, 1 (1967) 99-109.
[4] Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Annals of Mathematics, 78(1963), 365-416.
[5] A. Weil, Remarks on the cohomology of groups, Annals of Mathematics, 80(1964),149--157 .

