\overline{T}_n -SPACES

By Giovanni Viglino

A topological space for which any two distinct points can be separated by disjoint closed neighborhoods is said to be a Urysohn space or a \overline{T}_2 -space. One can easily construct an example of a \overline{T}_2 -space which is not regular as well as an example of a Hausdorff space which is not \overline{T}_2 . In this paper we define for every positive integer n a separation property denoted by \overline{T}_n which for n=1 corresponds with the Hausdorff separation property and for n=2 corresponds with the Urysohn separation property. From the definition below it is obvious that \overline{T}_{n+1} implies \overline{T}_n for each n and that a regular space is \overline{T}_n for every n. We show that for any n there exists a space which is \overline{T}_n but not \overline{T}_{n+1} . We also give an example of a space which is \overline{T}_n for every n but which is not regular.

DEFINITION. A space (X, \mathscr{F}) is \overline{T}_n if given any two distinct points p, q of X then there exists $O_i \in \mathscr{F}(1 \le i \le n)$ with $p \in O_1$, $\overline{O}_i \subset O_{i+1}$ $(1 \le i < n)$, $q \notin \overline{O}_n$.

THEOREM. There exists a space which is \overline{T}_n but not \overline{T}_{n+1} for any positive integer n.

PROOF. Let *n* be given. Let *Z* denote the set of positive integers and $\{R_i\}_{i=1}^n$ be a set of disjoint copies of the positive real line. Let x, y be two points not contained in any R_i , $1 \le i \le n$.

Case 1. *n* even. Let $X_1 = R_1 \sim \bigcup_{k=1}^{\infty} (\{4k-1\} \cup \{4k-1-\frac{1}{m} : m \in Z\})$. Let $X_{2r} = R_{2r} \sim \{4m : m \in Z\}, 1 \le r \le \frac{n}{2}$. Let $X_{2r-1} = R_{2r-1} \sim \bigcup_{k=1}^{\infty} \{4k - \frac{1}{m} : m \in Z\}, 2 \le r \le \frac{n}{2}$. Let $Y = \{x, y\} \cup \bigcup_{i=1}^{n} X_i$.

Topologize Y as follows: Let a neighborhood system for the point x be composed of all sets of the form $\{x\} \cup \{l \in X_1 : l \in \bigcup_{k=k_0}^{\infty} (4k, 4k+1) : k_0 \in Z\}$ and a

system for y be all sets of the form $\{y\} \cup \{l \in X_1 : l \in \bigcup_{k=k_0}^{\infty} (4k-2, 4k-1), k_0 \in Z\}.$

For $1 \le r \le \frac{n}{2}$, let a neighborhood system for any point of X_{2r-1} which is not of the form $4m, m \in \mathbb{Z}$, be composed of all the open subsets of the reals which contain the point but which do not contain any point of the form 4m. Let a neighborhood system for a point 4m in X_{2r-1} be composed of all sets of the

$$\begin{array}{l} \text{form } \left\{ l \in X_{2r-1} : 4m - t < l < 4m + t \right\} \cup \left\{ l \in X_{2r} : 4m - t < l < 4m + t \right\} \sim \left\{ l \in X_{2r} : l = 4m - \frac{1}{s}, s \in Z \right\} \text{ for } t \in (0, 1). \end{array}$$

For $1 \le r < \frac{n}{2}$ let a neighborhood system for any point X_{2r} which is not of the form $4m - \frac{1}{s}$; s, $m \in \mathbb{Z}$, be composed of all the open subsets of the reals which contain the point but which do not contain any point of the form $4m - \frac{1}{s}$; s, $m \in \mathbb{Z}$. Let a neighborhood system for a point $4m - \frac{1}{s}$ in X_{2r} be composed of all sets of the form

$$\left\{ l \in X_{2r} : 4m - \frac{1}{s} - t < l < 4m - \frac{1}{s} + t \right\} \cup \left\{ l \in X_{2r+1} : 4m - \frac{1}{s} - t < l < 4m - \frac{1}{s} + t \right\}$$
for $t \in (0, 1)$.

Let a neighborhood system for any point of X_n which is not of the form $4s - \frac{1}{m}$; $s, m \in \mathbb{Z}$, be composed of all the open subsets of the reals which contain the point but which do not contain any point of the form $4s - \frac{1}{m}$; $s, m \in \mathbb{Z}$. Let a neighborhood system for a point $4s - \frac{1}{m}$ in X_n be composed of all sets of the form $\{l \in X_n : 4s - \frac{1}{m} - t < l < 4s - \frac{1}{m} + t\} \mid \{l \in X_n : 4s - 1 - \frac{1}{m} - t < l < 4s - 1 - \frac{1}{m} + t\}$

$$\{t \in A_n, 4s - \frac{1}{m} - t < t < 4s - \frac{1}{m} + t\} \cup \{t \in A_1, 4s - 1 - \frac{1}{m} - t < t < 4s - 1 - \frac{1}{m} + t\}$$

for $t \in (0, 1)$.

One can show that the neighborhood system described above defines a topology on the set Y. It is easily observed that there does not exist a set of open subsets $\{O_i\}_{i=1}^{n+1}$ with $x \in O_1$, $\overline{O}_i \subset O_{i+1}$ $(1 \le i \le n)$. $y \notin \overline{O}_{n+1}$ and that for any two distinct points p, q of Y a set $\{O_i\}_{i=1}^n$ exists with $p \in O_1$, $\overline{O}_i \subset O_{i+1}$ $(1 \le i < n)$, $q \notin \overline{O}_n$. That is, Y is \overline{T}_n but not \overline{T}_{n+1} .

Case 2. n odd, say n=2r-1. Let Y' denote the set corresponding to 2r in case 1 and $Y = Y' \sim X_{2r}$. Let the neighborhood system for each point of $Y \sim X_n$ be the same as that defined for the corresponding point in Y' of case 1. Let a neighborhood system for any point of X_n which is not of the form 4m, $m \in Z$, be composed of all the open subsets of the reals which contain the point but which do not contain any point of the form 4m. Let a neighborhood system for a point 4m in X_n be composed of all sets of the form

$$\left\{ l \in X_n : 4m - t < l < 4m + t \right\} \cup \left\{ l \in X_1 : 4m - 1 - t < l < 4m - 1 + t \right\} \text{ for } t \in (0, 1).$$

Once more one can show the above construction yields a topological space which is \overline{T}_n but not \overline{T}_{n+1} .

REMARK. For an example of a non-regular space which is \overline{T}_n for each *n* but which is not regular one need only consider the unit interval with topology generated by the standard topology along with the set of rationals.

Wesleyan University Middletown, Connecticut U.S.A.