ON THE PRODUCT OF THE STRUCTURE SPACES

By Hong Oh Kim

From the pair (T, Z) of a semigroup T and a left ideal Z of it, K. D. Magill, Jr. constructed a topological space $\mathscr{U}(T, Z)$ called the structure space of the pair and obtained some interesting results and nice applications to certain topological spaces [1].

In this paper we are concerned with the structure space of the pair of the direct product $\Pi_{\lambda \in \Lambda} T_{\lambda}$ of a family of semigroups T_{λ} and the direct product $\Pi_{\lambda \in \Lambda} Z_{\lambda}$ of a family of left ideals Z_{λ} of T_{λ}, and obtain a result that if each T_{λ} has a left zero then the structure space of the pair $\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$ is homeomorphic to the product of the structure spaces of the pairs $\left(T_{\lambda}, Z_{\lambda}\right)$.

DEFINITION 1. [1] Let T be a semigroup and Z a left ideal of it. A nonempty subset A of $T \times \boldsymbol{Z}$ is called a bond if for any finite subset $\left\{\left(t_{i}, z_{i}\right)\right\}_{i=1}^{n} \subset A$, the system of equations $\left\{t_{i} x=z_{i}\right\}^{n}$, has a common solution x in Z. A bond which is not properly contained in any other bond is called an ultrabond. $\mathscr{U}(T, Z)$ denotes the set of all ultrabonds of the pair (T, Z), and will be equipped with the topology as follows :

DEFINITION 2. [1] For each $(t, z) \in T \times Z$, we let $H(t, z)=\{A \in \mathscr{C}(T, Z):(t, z)$ $\in A\}$. The topological space which is obtained by taking $\{H(t, z):(t, z) \in T \times Z\}$ as a subbasis for the closed subsets of $\mathscr{U}(T, Z)$ is defined to be the structure space of the pair (T, Z).

LEMMA 1. For each $v \in Z$, the set $\{(t, t v): t \in T\}$ is an ultrabond of (T, Z), and will be denoted by A_{v}.

PROOF. Suppose there exists a bond B which properly contains $A_{v^{*}}$. Take an element (t, z) from $B-A_{v}$, then $t v \neq z$. But $(t, t v) \in A_{v} \subset B$ and the system of equations $\{t x=z, t x=t \dot{t}\}$ has no common solution x in Z. This is a contradiction to the fact that B is a bond. Hence A_{v} is an ultrabond of (T, Z).

From lemma $1,\left\{A_{v}: v \in Z\right\}$ is a subspace of $\mathscr{\mathscr { C }}(T, Z)$. This space will be denoted by $\mathscr{R}(T, Z)$ and referred to as the realization of $Z[1]$.

Let a family $\left\{\left(T_{\lambda}, Z_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ of pairs of semigroups T_{λ} and its left ideals Z_{λ} be given. $\Pi_{\lambda \in A} T_{\lambda}$ and $\Pi_{\lambda \epsilon \Lambda} Z_{\lambda}$ denote the direct products of T_{λ} 's and Z_{λ} 's respectively. We note that $\Pi_{\lambda \in \Lambda} Z_{\lambda}$ is also a left ideal of $\Pi_{\lambda \in \Lambda} T_{\lambda}$.

LEMMA 2. Let A_{λ} be a bond of the pair $\left(T_{\lambda}, Z_{\lambda}\right)$ for each $\lambda \in \Lambda$. Then the set $\left\{\left(\left(t_{\lambda}\right)_{\lambda_{\epsilon},},\left(z_{\lambda}\right)_{\lambda_{\in \Lambda}}\right):\left(t_{\lambda}, z_{\lambda}\right) \in A_{\lambda}, \lambda \in \Lambda\right\}$ is a bond of $\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$, and will be denoted by (II) $\lambda_{\in A} A_{\lambda}$.

PROOF. Given $\left\{\left({\left(t_{\lambda}\right)}_{\lambda_{\lambda \in \Lambda}}\left(z_{\lambda}^{i}\right)_{\lambda_{\epsilon} A}\right)\right\}_{i=1}^{n} \subset\left(\mathbb{I D} \lambda_{\lambda \in \Lambda} A_{\lambda},\left\{\left(t_{\lambda}^{i}, z_{\lambda}^{i}\right)\right\}_{i=1}^{n} \subset A_{\lambda}\right.$ for each $\lambda \in \Lambda$. Since A_{λ} is a bond, there exists an element v_{λ} of Z_{λ} such that $t_{\lambda}^{i} v_{\lambda}=z i$ for each $i=1,2, \cdots, n$. Hence $\left(v_{\lambda}\right)_{\lambda \in A} \in \Pi_{\lambda \in \Lambda} Z_{\lambda}$ and $\left(t_{\lambda}^{i}\right)_{\lambda \in \Lambda}\left(v_{\lambda}\right)_{\lambda_{\epsilon \Lambda}}=\left(t_{\lambda}^{i} v_{\lambda}\right)_{\lambda_{\epsilon} A}=\left(z_{\lambda}^{i}\right)_{\lambda \in A}$, for each $i=1,2, \cdots, n$. Therefore $(\mathbb{I I})_{\lambda \in \Lambda} A_{\lambda}$ is a bond.

LEMMA 3. Let A be a bond of $\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$. Then for each $\lambda \in \Lambda$, the set $\left\{\left(t_{\lambda}, z_{\lambda}\right): P_{\lambda}(t)=t_{\lambda}\right.$ and $P_{\lambda}(z)=z_{\lambda}$ for some $\left.(t, z) \in A\right\}$, which will be denoted by A_{λ}, where P_{λ} denotes the projection to λ-th coordinates, and $A \subset(\mathbb{I})_{\lambda_{\epsilon}} A_{\lambda}$.

PROOF. If $\left\{\left(t_{\lambda}^{i}, z_{\lambda}^{i}\right)\right\}_{i=1}^{n} \subset A_{\lambda}$, then there exist $\left\{\left(t^{i}, z^{i}\right)\right\}_{i=1}^{n} \subset A$ such that $P_{\lambda}(t i)$ $=t_{\lambda}^{i}$ and $P_{\lambda}\left(z^{i}\right)=z_{\lambda}^{i}$ for each $i=1,2, \cdots, n$. Since A is a bond, there exists an element $v \in \Pi_{\lambda \in \Lambda} Z_{\lambda}$ such that $t^{i} v=z^{i}, i=1,2, \cdots, n$. Hence $v_{\lambda}=P_{\lambda}(v) \in Z_{\lambda}$ and $t_{\lambda}{ }^{i} v_{\lambda}=$ $P_{\lambda}\left(t^{i}\right) P_{\lambda}(v)=P_{\lambda}\left(t^{i} v\right)=P_{\lambda}\left(z^{i}\right)=\underset{\lambda}{z i}, i=1,2,, \cdots, n$. Therefore A_{λ} is a bond. Clearly $A \subset$ (II) $\lambda_{\epsilon 1} A_{\lambda}$.

LEMMA 4. A bond A of $\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$ is an ultrabond if and only if $A=\mathbb{I T}_{\lambda \in \Lambda} A_{\lambda}$ and A_{λ} is an ultrabond of $\left(T_{\lambda}, Z_{\lambda}\right)$ for each $\lambda \in \Lambda$. In this case $\left(\mathbb{1} \lambda_{\lambda \in A} A_{\lambda}\right)_{\lambda}=A_{\lambda}$.

PROOF. Suppose A is an ultrabond of $\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$. Then (ID $\lambda_{\lambda \in \Lambda} A_{\lambda}$ is a bond which contains A by lemmas 2 and 3 . Hence $A=\mathbb{T 1}_{\lambda_{\in} A} A_{\lambda}$ by the maximality of A. If B_{λ} is a bond which contains A_{λ}, then $\Pi_{\mu \neq \lambda} A_{\mu}\left(\mathbb{I D} B_{\lambda}\right.$ is a bond of $\left(\Pi_{\lambda \in A} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$ and contains $A=$ (II) $\lambda_{\lambda A} A_{\lambda}$. By the maximality of $A, A=$ (II) $\lambda_{\lambda A} A_{\lambda}=$ (II) $\mu_{\mu \neq \lambda} A_{\mu}$ (II) B_{λ}, and hence $A_{\lambda}=B_{\lambda}$. Therefore A_{λ} is an ultrabond of $\left(T_{\lambda}, Z_{\lambda}\right)$. Now suppose $A=\mathbb{I D}_{\lambda \in \Lambda} A_{\lambda}$ and A_{λ} is an ultrabond for each $\lambda \in \Lambda$ and suppose further that B is a bond of
($\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}$) which contains A. Then $\left.A=\Pi_{\lambda \in \Lambda} A_{\lambda} \subset B \subset \circlearrowleft 1\right) B_{\lambda \epsilon \Lambda}$ and hence $A_{\lambda} \subset B_{\lambda}$ for each $\lambda \in \Lambda$. By the maximality of $A_{\lambda}, A_{\lambda}=B_{\lambda}$ for each $\lambda \in \Lambda$, and hence $A=B$. Therefore A is an ultrabond of $\left(\Pi_{\lambda \epsilon A} T_{\lambda}, \Pi_{\lambda \epsilon \Lambda} Z_{\lambda}\right)$. The last statement is obvious.

Now we define a function h from $\mathscr{U}\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$ into $X_{\lambda \epsilon \Lambda}^{\mathscr{C}}\left(T_{\lambda}, Z_{\lambda}\right)$ by $h(A)=$ $\left(A_{\lambda}\right)_{\lambda_{\epsilon} \cdot}$. Then lemma 4 asserts that h is well defined and is a bijection.

LEMMA 5. $\quad h\left(H\left(\left(t_{\lambda}\right)_{\lambda \in \Lambda},\left(z_{\lambda}\right)_{\lambda \epsilon A}\right)\right)=\mathrm{X}_{\lambda \epsilon \Lambda} H\left(t_{\lambda}, z_{\lambda}\right)$ and $h^{-1}\left(\mathrm{X}_{\lambda \in A} H\left(t_{\lambda}, z_{\lambda}\right)\right)=$ $H\left(\left(t_{\lambda}\right)_{\lambda \in A},\left(z_{\lambda}\right)_{\lambda_{\epsilon A}}\right)$, where X denotes the cartesian product.

PROOF. The first assertion follows from the equivalent statements: $A \in H\left(\left(t_{\lambda}\right)_{\lambda \in A}\right.$, $\left.\left(z_{\lambda}\right)_{\lambda \in A}\right), \quad\left(\left(t_{\lambda}\right)_{\lambda \in A},\left(z_{\lambda}\right)_{\lambda \in A}\right) \in A, \quad\left(t_{\lambda}, z_{\lambda}\right) \in A_{\lambda}$ for each $\lambda \in \Lambda$. $A_{\lambda} \in H\left(t_{\lambda}, z_{\lambda}\right)$ for each $\lambda \in \Lambda$, and $\left(A_{\lambda}\right)_{\lambda \in \Lambda} \in X_{\lambda \in \Lambda} H\left(t_{\lambda}, z_{\lambda}\right)$.

Now the second assertion follows from the equivalent statements: $h(A)=\left(A_{\lambda}\right)_{\lambda \in A}$ $\in \mathrm{X}_{\lambda \in \Lambda} H\left(t_{\lambda}, z_{\lambda}\right), A_{\lambda} \in H\left(t_{\lambda}, z_{\lambda}\right)$ for each $\lambda \in \Lambda,\left(t_{\lambda}, z_{\lambda}\right) \in A_{\lambda}$ for each $\lambda \in \Lambda$, $\left(\left(t_{\lambda}\right)_{\lambda \in \Lambda}\right.$, $\left.\left(z_{\lambda}\right)_{\lambda \in A}\right) \in \mathbb{I I T}_{\lambda \in A} A_{\lambda}=A$, and $A \in H\left(\left(t_{\lambda}\right)_{\lambda_{\epsilon},}\left(z_{\lambda}\right)_{\lambda \in A}\right)$.

THEOREM. If each T_{λ} has a left zero, then the structure space of the pair $\left(\Pi_{\lambda \in A} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)$ is homeomorphic to the product of the structure spaces of the $\operatorname{pairs}\left(T_{\lambda}, Z_{\lambda}\right), \lambda \in \Lambda$.

PROOF. The first assertion of lemma 5 insures the continuity of h^{-1}. If each T_{λ} has a left zero 0_{λ}, then $H\left(0_{\lambda}, 0_{\lambda}\right)=\mathscr{U}\left(T_{\lambda}, Z_{\lambda}\right)$ and hence $h^{-1}\left(H\left(t_{\mu}, z_{\mu}\right) \times \mathrm{X}_{\lambda \neq \mu}\right.$ $\left.\mathscr{U}\left(T_{\lambda}, Z_{\lambda}\right)\right)=h\left(H\left(t_{\mu}, z_{\mu}\right) \times \mathrm{X}_{\lambda \neq \mu} H\left(0_{\lambda}, 0_{\lambda}\right)\right)=H\left(\left(t_{\mu}, 0_{\lambda}\right)_{\lambda \neq \mu},\left(z_{\mu}, 0_{\lambda}\right)_{\lambda \neq \mu}\right)$ by lemma 5. From this and the fact that $\left\{H\left(t_{\mu}, z_{\mu}\right) \times \mathrm{X}_{\lambda \neq \mu} \mathscr{C}\left(T_{\lambda}, Z_{\lambda}\right):\left(t_{\mu}, z_{\mu}\right) \in T_{\mu} \times Z_{\mu}, \mu \in \Lambda\right\}$ forms a subbasis for the closed subsets of $\left.X_{\lambda \in \Lambda^{\mathscr{C}}} \mathscr{(} T_{\lambda}, Z_{\lambda}\right)$, the continuity of h follows.

COROLLARY 1. If each T_{λ} has a left zero, then the realization of $\Pi_{\lambda \epsilon \Lambda} Z_{\lambda}$ is homeomorphic to the product of the realizations of Z_{λ} 's.

PROOF. For each $v=\left(v_{\lambda}\right)_{\lambda_{\epsilon}} \in \Pi_{\lambda \in \Lambda} Z_{\lambda}, A_{v}=\left\{(t, t v): t \in \Pi_{\lambda \epsilon \Lambda} T_{\lambda}\right\}=\left\{\left(\left(t_{\lambda}\right)_{\lambda_{\epsilon \Lambda}},\left(t_{\lambda} v_{\lambda}\right)_{\lambda_{\epsilon} \Lambda}\right)\right.$ $\left.: t_{\lambda} \in T_{\lambda}, \lambda \in \Lambda\right\}=\left(\mathbb{I}_{\lambda_{\epsilon} \Lambda} A_{v_{\lambda}}\right.$. Hence $h\left(\mathscr{R}\left(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda}\right)\right)=\mathrm{X}_{\lambda \in \Lambda} \mathscr{R}\left(T_{\lambda}, Z_{\lambda}\right)$. Therefore they are homeomorphic by the above theorem.

Referring to corollary (2.8) of [1]: If X is a normal Hausdorff space which
contains an arc, then the structure space of the pair $(S(X), Z(X))$ is the Stone-Čech: compactification of X where $S(X)$ denotes the semigroup of all continuous selfmappings on X and $Z(X)$ its kernel, i.e., the set of all constant selfmappings on X : we have the following

COROLLARY 2. If X_{λ} is a normal Hausdorff space which contains an arc for each $\lambda \in \Lambda$, then the product of the Stone-Čech compactifications of X_{λ} 's is homeomorphic to tive structure space of the pair $\left(\Pi_{\lambda \in \Lambda} S\left(X_{\lambda}\right), \Pi_{\lambda \in \Lambda} Z\left(X_{\lambda}\right)\right)$.

PROOF. Since $\mathscr{U}\left(S\left(X_{\lambda}\right), Z\left(X_{\lambda}\right)\right)$ is the Stone-Čech compactification βX_{λ} of X_{λ} for each $\lambda \in \Lambda, X_{\lambda \in A} \beta X_{\lambda}=X_{\lambda \in \Lambda} \mathscr{U}\left(S\left(X_{\lambda}\right), Z\left(X_{\lambda}\right)\right)$ and is homeomorphic to $\mathscr{U}\left(\Pi_{\lambda \in \Lambda} S\left(X_{\lambda}\right)\right.$, $\left.\Pi_{\lambda \epsilon \Lambda^{2}} Z\left(X_{\lambda}\right)\right)$ by the above theorem.

DEFINITION 3. [2] A topological space X is called an S^{*}-space if it is T_{1} and for each closed subset F of X and each point $p \in X-F$, there exists a function f in $S(X)$ and a point y in X such that $f(x)=y$ for each x in F and $f(p) \neq y$.

It was pointed out in [2] that this class of spaces includes all completely regular Hausdorff spaces which contain an arc as well as all 0-dimensional Hausdorff spaces.

Recalling the theorem (2.3) of [1] that every S^{*}-space X is homeomorphic to the realization $\mathscr{R}(S(X), Z(X))$ of $Z(X)$, we have the following

COROLLARY 3. If X_{λ} is an S^{*}-space for each $\lambda \in \Lambda$, then $X_{\lambda \in \Lambda} X_{\lambda}$ is homeomorphic to the realization $\mathscr{R}\left(\Pi_{\lambda \in \Lambda} S\left(X_{\lambda}\right), \Pi_{\lambda \in \Lambda} Z\left(X_{\lambda}\right)\right)$ of $\Pi_{\lambda \in \Lambda} Z\left(X_{\lambda}\right)$.

PROOF. $X_{\lambda \in A} X_{\lambda}$ is homeomorphic to $X_{\lambda \in \Lambda} \mathscr{R}\left(S\left(X_{\lambda}\right), Z\left(X_{\lambda}\right)\right)$, which is homeomorphic to $\mathscr{R}\left(\Pi_{\lambda \in \Lambda} S\left(X_{\lambda}\right), \Pi_{\lambda \epsilon \Lambda} Z\left(X_{\lambda}\right)\right)$ by corollary 1 .

Kyungpook University

REFERENCES

[1] K. D. Magill, Jr., Topological spaces determined by left ideals of semigroups, PacificJ. Math. Vol. 24, No. 2 (1968) 319-330.
[2] K. D. Magill, Jr., Another S-admissible class of spaces, Proc. Amer. Math. Soc. 18 (1967) 295-298.

