ON THE PRODUCT OF THE STRUCTURE SPACES

By Hong Oh Kim

From the pair (T, Z) of a semigroup T and a left ideal Z of it, K. D. Magill, Jr. constructed a topological space $\mathcal{U}(T, Z)$ called the structure space of the pair and obtained some interesting results and nice applications to certain topological spaces [1].

In this paper we are concerned with the structure space of the pair of the direct product $\Pi_{\lambda \epsilon A} T_{\lambda}$ of a family of semigroups T_{λ} and the direct product $\Pi_{\lambda \epsilon A} Z_{\lambda}$ of a family of left ideals Z_{λ} of T_{λ} , and obtain a result that if each T_{λ} has a left zero then the structure space of the pair $(\Pi_{\lambda \epsilon A} T_{\lambda}, \Pi_{\lambda \epsilon A} Z_{\lambda})$ is homeomorphic to the product of the structure spaces of the pairs $(T_{\lambda}, Z_{\lambda})$.

DEFINITION 1. [1] Let T be a semigroup and Z a left ideal of it. A nonempty subset A of $T \times Z$ is called a *bond* if for any finite subset $\{(t_i, z_i)\}_{i=1}^n \subset A$, the system of equations $\{t_i x = z_i\}_{i=1}^n$ has a common solution x in Z. A bond which is not properly contained in any other bond is called an *ultrabond*. $\mathcal{U}(T, Z)$ denotes the set of all ultrabonds of the pair (T, Z), and will be equipped with the topology as follows:

DEFINITION 2. [1] For each $(t,z) \in T \times Z$, we let $H(t,z) = \{A \in \mathcal{U}(T,Z) : (t,z) \in A\}$. The topological space which is obtained by taking $\{H(t,z) : (t,z) \in T \times Z\}$ as a subbasis for the closed subsets of $\mathcal{U}(T,Z)$ is defined to be the structure space of the pair (T,Z).

LEMMA 1. For each $v \in \mathbb{Z}$, the set $\{(t,tv): t \in T\}$ is an ultrabond of (T,\mathbb{Z}) , and will be denoted by A_v .

PROOF. Suppose there exists a bond B which properly contains A_v . Take an element (t,z) from $B-A_v$, then $tv\neq z$. But $(t,tv)\in A_v\subset B$ and the system of equations $\{tx=z,\ tx=tv\}$ has no common solution x in Z. This is a contradiction to the fact that B is a bond. Hence A_v is an ultrabond of (T,Z).

From lemma 1, $\{A_v : v \in Z\}$ is a subspace of $\mathcal{U}(T, Z)$. This space will be denoted by $\mathcal{R}(T, Z)$ and referred to as the realization of Z [1].

Let a family $\{(T_{\lambda}, Z_{\lambda})\}_{\lambda \in \Lambda}$ of pairs of semigroups T_{λ} and its left ideals Z_{λ} be given. $\Pi_{\lambda \in \Lambda} T_{\lambda}$ and $\Pi_{\lambda \in \Lambda} Z_{\lambda}$ denote the direct products of T_{λ} 's and Z_{λ} 's respectively. We note that $\Pi_{\lambda \in \Lambda} Z_{\lambda}$ is also a left ideal of $\Pi_{\lambda \in \Lambda} T_{\lambda}$.

LEMMA 2. Let A_{λ} be a bond of the pair $(T_{\lambda}, Z_{\lambda})$ for each $\lambda \in \Lambda$. Then the set $\{((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda}) : (t_{\lambda}, z_{\lambda}) \in A_{\lambda}, \lambda \in \Lambda\}$ is a bond of $(\prod_{\lambda \in \Lambda} T_{\lambda}, \prod_{\lambda \in \Lambda} Z_{\lambda})$, and will be denoted by $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$.

PROOF. Given $\{((t_{\lambda}^{i})_{\lambda \in \Lambda}, (z_{\lambda}^{i})_{\lambda \in \Lambda})\}_{i=1}^{n} \subset \bigoplus_{\lambda \in \Lambda} A_{\lambda}$, $\{(t_{\lambda}^{i}, z_{\lambda}^{i})\}_{i=1}^{n} \subset A_{\lambda}$ for each $\lambda \in \Lambda$. Since A_{λ} is a bond, there exists an element v_{λ} of Z_{λ} such that $t_{\lambda}^{i}v_{\lambda} = z_{\lambda}^{i}$ for each $i=1,2,\cdots,n$. Hence $(v_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} Z_{\lambda}$ and $(t_{\lambda}^{i})_{\lambda \in \Lambda} (v_{\lambda})_{\lambda \in \Lambda} = (t_{\lambda}^{i}v_{\lambda})_{\lambda \in \Lambda} = (z_{\lambda}^{i})_{\lambda \in \Lambda}$, for each $i=1,2,\cdots,n$. Therefore $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ is a bond.

LEMMA 3. Let A be a bond of $(\prod_{\lambda \in A} T_{\lambda}, \prod_{\lambda \in A} Z_{\lambda})$. Then for each $\lambda \in A$, the set $\{(t_{\lambda}, z_{\lambda}): P_{\lambda}(t) = t_{\lambda} \text{ and } P_{\lambda}(z) = z_{\lambda} \text{ for some } (t, z) \in A\}$, which will be denoted by A_{λ} , where P_{λ} denotes the projection to λ -th coordinates, and $A \subset \mathbb{D}_{\lambda \in A} A_{\lambda}$.

PROOF. If $\{(t_{\lambda}^{i}, z_{\lambda}^{i})\}_{i=1}^{n} \subset A_{\lambda}$, then there exist $\{(t^{i}, z^{i})\}_{i=1}^{n} \subset A$ such that $P_{\lambda}(t^{i}) = t_{\lambda}^{i}$ and $P_{\lambda}(z^{i}) = z_{\lambda}^{i}$ for each $i=1,2,\cdots,n$. Since A is a bond, there exists an element $v \in \Pi_{\lambda \in A} Z_{\lambda}$ such that $t^{i}v = z^{i}$, $i=1,2,\cdots,n$. Hence $v_{\lambda} = P_{\lambda}(v) \in Z_{\lambda}$ and $t_{\lambda}^{i}v_{\lambda} = P_{\lambda}(t^{i})P_{\lambda}(v) = P_{\lambda}(t^{i}v) = P_{\lambda}(z^{i}) = z_{\lambda}^{i}$, $i=1,2,\cdots,n$. Therefore A_{λ} is a bond. Clearly $A \subset \mathbb{D}_{\lambda \in A} A_{\lambda}$.

LEMMA 4. A bond A of $(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda})$ is an ultrabond if and only if $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ and A_{λ} is an ultrabond of $(T_{\lambda}, Z_{\lambda})$ for each $\lambda \in \Lambda$. In this case $(\bigoplus_{\lambda \in \Lambda} A_{\lambda})_{\lambda} = A_{\lambda}$.

PROOF. Suppose A is an ultrabond of $(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda})$. Then $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ is a bond which contains A by lemmas 2 and 3. Hence $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ by the maximality of A. If B_{λ} is a bond which contains A_{λ} , then $\bigoplus_{\mu \neq \lambda} A_{\mu} \bigoplus B_{\lambda}$ is a bond of $(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda})$ and contains $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$. By the maximality of A, $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda} = \bigoplus_{\mu \neq \lambda} A_{\mu} \bigoplus B_{\lambda}$, and hence $A_{\lambda} = B_{\lambda}$. Therefore A_{λ} is an ultrabond of $(T_{\lambda}, Z_{\lambda})$. Now suppose $A = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ and A_{λ} is an ultrabond for each $\lambda \in \Lambda$ and suppose further that B is a bond of

 $(\Pi_{\lambda \epsilon A} T_{\lambda}, \Pi_{\lambda \epsilon A} Z_{\lambda})$ which contains A. Then $A = \bigoplus_{\lambda \epsilon A} A_{\lambda} \subset B \subset \bigoplus B_{\lambda \epsilon A}$ and hence $A_{\lambda} \subset B_{\lambda}$ for each $\lambda \in A$. By the maximality of A_{λ} , $A_{\lambda} = B_{\lambda}$ for each $\lambda \in A$, and hence A = B. Therefore A is an ultrabond of $(\Pi_{\lambda \epsilon A} T_{\lambda}, \Pi_{\lambda \epsilon A} Z_{\lambda})$. The last statement is obvious.

Now we define a function h from $\mathcal{U}(\prod_{\lambda \in A} T_{\lambda}, \prod_{\lambda \in A} Z_{\lambda})$ into $X_{\lambda \in A} \mathcal{U}(T_{\lambda}, Z_{\lambda})$ by $h(A) = (A_{\lambda})_{\lambda \in A}$. Then lemma 4 asserts that h is well defined and is a bijection.

LEMMA 5. $h(H((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda})) = X_{\lambda \in \Lambda}H(t_{\lambda}, z_{\lambda})$ and $h^{-1}(X_{\lambda \in \Lambda}H(t_{\lambda}, z_{\lambda})) = H((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda})$, where X denotes the cartesian product.

PROOF. The first assertion follows from the equivalent statements: $A \in H((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda})$, $((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda}) \in A$, $(t_{\lambda}, z_{\lambda}) \in A_{\lambda}$ for each $\lambda \in \Lambda$. $A_{\lambda} \in H(t_{\lambda}, z_{\lambda})$ for each $\lambda \in \Lambda$, and $(A_{\lambda})_{\lambda \in \Lambda} \in X_{\lambda \in \Lambda} H(t_{\lambda}, z_{\lambda})$.

Now the second assertion follows from the equivalent statements: $h(A) = (A_{\lambda})_{\lambda \in \Lambda}$ $\in X_{\lambda \in \Lambda} H(t_{\lambda}, z_{\lambda}), A_{\lambda} \in H(t_{\lambda}, z_{\lambda})$ for each $\lambda \in \Lambda$, $(t_{\lambda}, z_{\lambda}) \in A_{\lambda}$ for each $\lambda \in \Lambda$, $((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda}) \in \mathbb{D}_{\lambda \in \Lambda} A_{\lambda} = A$, and $A \in H((t_{\lambda})_{\lambda \in \Lambda}, (z_{\lambda})_{\lambda \in \Lambda})$.

THEOREM. If each T_{λ} has a left zero, then the structure space of the pair $(\prod_{\lambda \in \Lambda} T_{\lambda}, \prod_{\lambda \in \Lambda} Z_{\lambda})$ is homeomorphic to the product of the structure spaces of the pairs $(T_{\lambda}, Z_{\lambda})$, $\lambda \in \Lambda$.

PROOF. The first assertion of lemma 5 insures the continuity of h^{-1} . If each T_{λ} has a left zero 0_{λ} , then $H(0_{\lambda}, 0_{\lambda}) = \mathcal{U}(T_{\lambda}, Z_{\lambda})$ and hence $h^{-1}(H(t_{\mu}, z_{\mu}) \times X_{\lambda \neq \mu}) = h(H(t_{\mu}, z_{\mu}) \times X_{\lambda \neq \mu} H(0_{\lambda}, 0_{\lambda})) = H((t_{\mu}, 0_{\lambda})_{\lambda \neq \mu}, (z_{\mu}, 0_{\lambda})_{\lambda \neq \mu})$ by lemma 5. From this and the fact that $\{H(t_{\mu}, z_{\mu}) \times X_{\lambda \neq \mu} \mathcal{U}(T_{\lambda}, Z_{\lambda}) : (t_{\mu}, z_{\mu}) \in T_{\mu} \times Z_{\mu}, \mu \in \Lambda\}$ forms a subbasis for the closed subsets of $X_{\lambda \in \Lambda} \mathcal{U}(T_{\lambda}, Z_{\lambda})$, the continuity of h follows.

COROLLARY 1. If each T_{λ} has a left zero, then the realization of $\Pi_{\lambda \in A} Z_{\lambda}$ is homeomorphic to the product of the realizations of Z_{λ} 's.

PROOF. For each $v = (v_{\lambda})_{\lambda \in \Lambda} \in \Pi_{\lambda \in \Lambda} Z_{\lambda}$, $A_{v} = \{(t, tv) : t \in \Pi_{\lambda \in \Lambda} T_{\lambda}\} = \{((t_{\lambda})_{\lambda \in \Lambda}, (t_{\lambda}v_{\lambda})_{\lambda \in \Lambda}) : t_{\lambda} \in T_{\lambda}, \lambda \in \Lambda\} = \bigoplus_{\lambda \in \Lambda} A_{v_{\lambda}}$. Hence $h(\mathcal{R}(\Pi_{\lambda \in \Lambda} T_{\lambda}, \Pi_{\lambda \in \Lambda} Z_{\lambda})) = X_{\lambda \in \Lambda} \mathcal{R}(T_{\lambda}, Z_{\lambda})$. Therefore they are homeomorphic by the above theorem.

Referring to corollary (2.8) of [1]: If X is a normal Hausdorff space which

contains an arc, then the structure space of the pair (S(X), Z(X)) is the Stone-Čecik compactification of X where S(X) denotes the semigroup of all continuous self-mappings on X and Z(X) its kernel, i.e., the set of all constant selfmappings on X; we have the following

COROLLARY 2. If X_{λ} is a normal Hausdorff space which contains an arc for each $\lambda \in \Lambda$, then the product of the Stone-Čech compactifications of X_{λ} 's is homeomorphic to the structure space of the pair $(\prod_{\lambda \in \Lambda} S(X_{\lambda}), \prod_{\lambda \in \Lambda} Z(X_{\lambda}))$.

PROOF. Since $\mathscr{U}(S(X_{\lambda}), Z(X_{\lambda}))$ is the Stone-Čech compactification βX_{λ} of X_{λ} for each $\lambda \in \Lambda$, $X_{\lambda \in \Lambda}\beta X_{\lambda} = X_{\lambda \in \Lambda}\mathscr{U}(S(X_{\lambda}), Z(X_{\lambda}))$ and is homeomorphic to $\mathscr{U}(\Pi_{\lambda \in \Lambda}S(X_{\lambda}), \Pi_{\lambda \in \Lambda}Z(X_{\lambda}))$ by the above theorem.

DEFINITION 3. [2] A topological space X is called an S^* -space if it is T_1 and for each closed subset F of X and each point $p \in X - F$, there exists a function f in S(X) and a point y in X such that f(x)=y for each x in F and $f(p)\neq y$.

It was pointed out in [2] that this class of spaces includes all completely regular Hausdorff spaces which contain an arc as well as all 0-dimensional Hausdorff spaces.

Recalling the theorem (2.3) of [1] that every S^* -space X is homeomorphic to the realization $\mathcal{R}(S(X), Z(X))$ of Z(X), we have the following

COROLLARY 3. If X_{λ} is an S*-space for each $\lambda \in \Lambda$, then $X_{\lambda \in \Lambda} X_{\lambda}$ is homeomorphic to the realization $\mathcal{R}(\prod_{\lambda \in \Lambda} S(X_{\lambda}), \prod_{\lambda \in \Lambda} Z(X_{\lambda}))$ of $\prod_{\lambda \in \Lambda} Z(X_{\lambda})$.

PROOF. $X_{\lambda \in \Lambda} X_{\lambda}$ is homeomorphic to $X_{\lambda \in \Lambda} \mathcal{R}(S(X_{\lambda}), Z(X_{\lambda}))$, which is homeomorphic to $\mathcal{R}(\Pi_{\lambda \in \Lambda} S(X_{\lambda}), \Pi_{\lambda \in \Lambda} Z(X_{\lambda}))$ by corollary 1.

Kyungpook University

REFERENCES

- K. D. Magill, Jr., Topological spaces determined by left ideals of semigroups, Pacific J. Math. Vol. 24, No. 2 (1968) 319-330.
- [2] K. D. Magill, Jr., Another S-admissible class of spaces, Proc. Amer. Math. Soc. 18 (1967) 295—298.