ON THE PRODUCT OF THE STRUCTURE SPACES
By Hong Oh Kim

From the pair (7', Z) of a semigroup T and a left ideal Z of it, K. D. Magill, Jr.
constructed a topological space (T, Z) called the structure space of the pair
and obtained some interesting results and nice applications to certain topological

spaces [1].

In this paper we are concerned with the structure space of the pair of the
direct product II,, T, of a family of semigroups T, and the direct product II;, ,Z, of
a family of left ideals Z; of T;, and obtain a result that if each T, has a left
zero then the structure space of the pair (II;, ,T';,II; ,Z;) is homeomorphic to the
product of the structure spaces of the pairs (T;, Z;).

DEFINITION 1. [1] Let T be a semigroup and Z a left ideal of it. A nonempty
subset A of T'<Z is called a bond if for any finite subset {(t,-,z,.)}';:lCA. the

system of equations {tz:c=zi}':.:1 has a common solution x in Z. A bond which is
not properly contained in any other bond is called an w/trabond. Z (T, Z) denotes
the set of all ultrabonds of the pair (T,Z), and will be equipped with the topo-
logy as follows :

DEFINITION 2. [1] For each ({,z)ETXZ, we let H(t,2)={A€¥(T,Z):(t,z)
€A}. The topological space which is obtained by taking ({H(¢,2):(t,z2)ET xZ}
as a subbasis for the closed subsets of Z(T,Z) is defined to be the struciure
space of the pair (T, Z).

LEMMA 1. For each vEZ, the set {(i,1v):1€T} is an ultrabond of (T,Z), and
will be denoted by A,

PROOF. Suppose there exists a bond B which properly contains 4, Take an
element (¢,2) from B—A, then fv#z. But (1,#v)EACB and the system of
equations {{x=z, fx={s} has no common solution x in Z. This is a contradiction
to the fact that B is a bond. Hence 4, is an ultrabond of (7, 2).

From lemma 1, {A,:v€Z} is a subspace of (T, Z). This space will be denoted
by #(T,Z) and referred to as the realization of Z [1].
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Let a family {(T';, Z))},,, of pairs of semigroups T'; and its left ideals Z; be
given. II; T; and II;,,Z; denote the direct products of T';’s and Z;'s respectively.
We note that II;_,Z, is also a left ideal of II, 7.

LEMMA 2. Let A; be a bond of the pair (T;,Z;) for each AEA. Then the set
{((tj.)?f.‘t' (zl)l(/l):(t:l' zl)eAl’ ZEA} 1‘3 a baﬂd af (HRMTI, HZEAZZ)’ and ﬁb'l’[l be
denoted by ®ZEAAR.'

PROOF. Given {((£)z (2D PV 21 C B p4ne (12D} CA, for each A€
Since 4, is a bond, there exists an element v, of Z; such that{y,=z 5 for each
i=1,2,+,n Hence (vp), €I, ,Z; and (t,{)iszi("l)kfi:Ct;f”z)lmz(z;f)zm- for each

i=1,2,+,n Therefore @, ,4; is a bond.

3 =3

LEMMA 3. Let A be a bond of (II, T, 1;, ,Z;). Then for each AEA, the set
[(t;,2;):P;(1)=t; and P;(2)=z,; for some (t,2)EA}, which will be denoted by A;,
where P; denotes the projection to A-th coordinates, and ACH®;, A, .

PROOF. If {(t;i, z’{)}’,?:lCA;., then there exist {(#, zi)}:};lCA such that P;(#7)
=t! and Py(zi)=z] for each i=1,2, -2 Since A is a bond, there exists an
element ¢€ll;_,Z; such that twv=zi,i=1,2,--,n. Hence v;=P,(v)EZ; and ¢;'z;,=
P;(t) Py (v)=P;(tiv) =Py(z}) =22f, i=1,2,,+-,n. Therefore 4; is a bond. Clearly
AC®,, 44;-

LEMMA 4. Abond A of (Il T 11, ,Z;) is an ultrabond if and only if A=, 44,
and A, is an ultrabond of (T;, Z;) for each AEA. In this case (@3 442)7=4;-

PROOF. Suppose 4 is an ultrabond of (II, T, 11, ,Z;). Then @, ,A; is a bond
which contains 4 by lemmas 2 and 3. Hence A=@®;, ,4; by the maximality of A.
If B, isa bond which contains 4,, then ®#¢1A“®Bl is a bond of (II,, 7,1, ,Z))
and contains A=@; 44;. By the maximality of 4, A=@;, AAZ=®;L#J.A,H®BZ’ and
hence A;=B;. Therefore 4, is an ultrabond of (7', Z;). Now suppose A=M,_,4,

and 4, is an ultrabond for each A€ and suppose further that B is a bond of
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L, T 15, 4£5) which contains A. Then A=@);, 44;CBC®B,, , and hence 4,CE;
for each A€A. By the maximality of A,, A;=B,; for each A€4, and hence 4= 5.
Therefore A is an ultrabond of (I, T, 11; ,Z;). The last statement is obvious.

Now we define a function & from Z (Il ,T';. 11, ,Z;) into X;, & (T, Z;) by h(A) =
(A;);. 4 Then lemma 4 asserts that & is well defined and is a bijection.

LEMMA 5. h(H(tD5 0 @2 =Xz sH s 23) and b~ (X H(ty 2))=
H((t3)304+ (23)3.4)» where X denoles the cartesian product.

PROOF. The first assertion follows from the equivalent statements: AEH((¢);, ,»
@sen)r (D5 G2 VEA, (43,2;)EA,; for each A€EA. A;€H(1;,2;) for each
A€A, and (4;);, € X; H 1 2;).

Now the second assertion follows from the equivalent statements: h(4)=(4,);.,
€X; H(l, 7)), A;€H(2, 2;) for each A€, (¢;,2,)EA, for each €4, ((2); 4
(203 ) E Wy 44:=A4, and ACH (1), 4 (2340

THEOREM. If each T has a left zero, then the structure space of the pair
(L, T3, 105, ,Z;) is homeomorphic to the product of the structure spaces of the
pairs (T3, Z;), Zed.

PROOF. The first assertion of lemma 5 insures the continuity of A=Y, If each
T, has a left zero 0, then H(0;,0)=%(T; Z;) and hence h—1(H(t,z,)XX;.,
% (T3 Z))=h(H(,, 2,) X X3, H (03 0,0 = H((t, 0203, (2, 0.2, by lemma 5.
From this and the fact that {H(t#, z#)xxbé#Z’(Tl, Z,_):(t#, zﬂ)ET“XZM, pe A}
forms a subbasis for the closed subsets of X, A?(Tz,zz), the continuity of A
follows.

COROLLARY 1. If each T'; has a left zero, then the realization of I, ,Z; is ho-
meomorphic to the product of the realizations of Z;'s.

PROOF. For each v=(v)), €I, ,Z; A= {tt0):2€ll, T} ={({Ds0 Ci¥s 4
€Ty, AEA} =D;, ,,sz. Hence h(# (1, (T, [ 4Z2:))= X3 4% (T3 Z;). Therefore

they are homeomorphic by the above theorem.

Referring to corollary (2.8) of [1]: If X is a normal Hausdorff space which
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contains an arc, then the structure space of the pair (S(X), Z(X)) is the Stone-Ceche
compactification of X where S(X) denotes the semigroup of all continuous self-
mappings on X and Z(X) its kernel, i.e., the set of all constant selfmappings
on X: we have the following

COROLLARY 2. If X, is a normal Hausdorff space which conlains an arc for each
AE A, then the product of the Stone-Cech compactifications of X;'s is homeomorphic to

tiie structure space of the pair (Il S(X),II;, Z(X;)).
PROOF. Since Z'(S(X;), Z(X;)) is the Stone-Cech compactification X of X, for

cach A€4, X;, 8X;=X;.,# (S(X;), Z(X;)) and is homeomorphic to Z (I, S(X;),
iI;, ,Z(X;)) by the above theorem.

DEFINITION 3. [2] A topological space X is called an S¥-space if it is T| and

for each closed subset F of X and each point pEX—F, there exists a function
S in S(X) and a point y in X such that f(x)=y for each x in F and f(p)#y.

It was pointed out in [2] that this class of spaces includes all completely regular
Hausdorff spaces which contain an arc as well as all 0-dimensional Hausdorff
spaces.

Recalling the theorem (2.3) of [1] that every S*-space X is homeomorphic to
the realization #(S(X),Z(X)) of Z(X), we have the following

COROLLARY 3. If X, is an S*-space for each AE€A, then X; X, is homeo-
morphic to the realization #(Il,, ,S(X;), 11 ; Z(X;)) of Il ,Z(X,).

PROOF. X, 4X; is homeomorphic to X;_,#(S(X;),Z(X;)), which is homeo-
morphic to F# (I, S(Xy, ;. ,Z(X;)) by corollary 1.
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