ON PAIRWISE CONNECTED BITOPOLOGICAL SPACES

By Ivan L. Reilly

If X is a set and \mathscr{T}_1 and \mathscr{T}_2 are topologies on X, then Kelly [2] called the triple $(X, \mathscr{T}_1, \mathscr{T}_2)$ a bitopological space. Pervin [3] initiated the study of connectedness properties for such spaces, and Birsan [1] has also discussed this topic. This paper proves some further results in this area and, in particular, deals with total disconnectedness for bitopological spaces.

Following Pervin [3] we have the

DEFINITION 1. $(X, \mathcal{T}_1, \mathcal{T}_2)$ is *pairwise connected* iff X cannot be expressed as the union of two non-empty disjoint sets A and B such that $(A \cap \mathcal{T}_1 \operatorname{cl} B) \cup$ $(\mathcal{T}_2 \operatorname{cl} A \cap B) = \phi$. (Throughout this paper $\mathcal{T}_1 \operatorname{cl} A$ denotes the \mathcal{T}_1 closure of the set A.) If X can be so expressed we write $X = A \mid B$ and this is a separation of X, which is then pairwise disconnected.

That the pairwise connectedness of $(X, \mathcal{T}_1, \mathcal{T}_2)$ is not governed by the connectedness of the topological spaces (X, \mathcal{T}_1) and (X, \mathcal{T}_2) is shown by the following examples. Let $X = \{a, b\}$, \mathcal{T}_1 be the discrete topology and \mathcal{T}_2 the indiscrete topology for X. Then $(X, \mathcal{T}_1, \mathcal{T}_2)$ is parwise connected while (X, \mathcal{T}_1) is not connected. Let \mathcal{T}_3 be $\{\phi, X, \{a\}\}$ and \mathcal{T}_4 be $\{\phi, X, \{b\}\}$. Then $X = \{a\} \mid \{b\}$ is a separation of $(X, \mathcal{T}_3, \mathcal{T}_4)$, but (X, \mathcal{T}_3) and (X, \mathcal{T}_4) are connected.

DEFINITION 2. A function $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{S}_1, \mathcal{S}_2)$ is parwise continuous (respectively, a pairwise homeomorphism) iff the induced functions $f:(X, \mathcal{T}_1) \to (Y, \mathcal{S}_1)$ and $f:(X, \mathcal{T}_2) \to (Y, \mathcal{S}_2)$ are continuous (respectively, homeomorphisms).

Amongst other results, Pervin [3] proves the following.

THEOREM 1. $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise connected iff every pairwise continuous function $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (R, \mathcal{L}, \mathcal{R})$ has the Darboux property, that is, its range is

Ivan L. Reilly

an interval, where R is the set of real numbers and \mathcal{L} and \mathcal{R} are the left hand and right hand topologies on R with bases $\{(-\infty, x) : x \in R\}$ and $\{(y, +\infty) : y \in R\}$ respectively.

DEFINITION 3. (Pervin). A subset K of $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise connected if the bitopological space $(K, \mathcal{T}_1 | K, \mathcal{T}_2 | K)$ is pairwise connected.

In contrast to the topological situation, closures of pairwise connected sets need not be pairwise connected. For example, if X is $\{a, b, c\}$, \mathcal{T}_1 is $\{\phi, X, \{a\}, \{b, c\}\}$ and \mathcal{T}_2 is $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, then \mathcal{T}_2 cl $\{a\} = \{a, c\}$ and is pairwise disconnected.

THEOREM 2. If $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise T_1 , then every non-empty non-singleton pairwise connected subset of X is infinite.

PROOF. Let A be a finite non-empty non-singleton subset of X. As $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise T_1 each singleton subset of X is \mathcal{T}_1 closed and \mathcal{T}_2 closed. Thus if B is any non-empty proper subset of A, B is \mathcal{T}_1 closed (as B is finite) and $A \sim B$ is \mathcal{T}_2 closed. Hence B is $\mathcal{T}_1 | A$ closed and $\mathcal{T}_2 | A$ open, and so $(A, \mathcal{T}_1 | A, \mathcal{T}_2 | A)$ is pairwise disconnected, by theorem A(c) of Pervin [3].

This result can be sharpened for the special case of quasi-metric spaces. THEOREM 3. If $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a quasi-metric bitopological space, then every non-empty non-singleton pairwise connected subset of X is uncountable.

PROOF. Let \mathscr{T}_1 be generated by the quasi-metric p on X, so that \mathscr{T}_2 is generated by the conjugate q of p. Let A be a non-empty non-singleton pairwise connected subset of X, and $a \in A$. Define the real valued function f on A by f(x)=p(x, a) for each $x \in A$. Then f is \mathscr{T}_1 lower and \mathscr{T}_2 upper semi-continuous, so that the function $f:(A, \mathscr{T}_1|A, \mathscr{T}_2|A) \to (R, \mathscr{L}, \mathscr{R})$ is pairwise continuous. Thus, by theorem 1, f(A) is an interval. Now for any point b of A distinct from a, p(b, a) is non-zero. Thus the interval (0, p(b, a)) is contained in f(A)which is therefore uncountable, and hence so is A.

The number of components of a bitopological space and the structure of each component is a bitopological invariant.

THEOREM 4. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{S}_1, \mathcal{S}_2)$ be pairwise continuous. Then the image of each component of X lies in a component of Y. Furthermore, if f is a pairwise homeomorphism, then f induces a one to one correspondence between the components of X and those of Y, corresponding components being pairwise homeomorphic.

PROOF. Let x be any point of X and C be the component of X containing x. Then f(C) is pairwise connected, by Theorem D of Pervin [3], and contains f(x). Hence f(C) is contained in the component D of Y containing f(x). If f is a pairwise homeomorphism, so is f^{-1} , so that $f(C) \subset D$ and $f^{-1}(D) \subset C$. Thus f(C)=D. The proof of the rest of the theorem is immediate.

DEFINITION 4. $(X, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise totally disconnected if each pair of points of X can be separated by a separation of X, that is, if x and y are distinct points of X there is a separation X=A|B such that $x\in A$ and $y\in B$ or $x\in B$ and $y\in A$.

The next result shows that this definition coincides with that of Birsan [1].

PROPORSITION 1. The components of a pairwise totally disconnected space are its points.

PROOF. Simply observe that any subset containing more than one point is pairwise disconnected.

If X is any non-empty non-singleton set, \mathscr{T}_1 is the discrete topology and \mathscr{T}_2 the indiscrete topology on X, then $(X, \mathscr{T}_1, \mathscr{T}_2)$ is pairwise connected, while (X, \mathscr{T}_1) is totally disconnected.

If $X = \{a, b, c, d\}$, \mathcal{T}_1 is $\{\phi, X, \{b\}, \{a, b\}, \{b, d\}, \{a, b, d\}\}$ and \mathcal{T}_2 is $\{\phi, X, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \text{then } (X, \mathcal{T}_1, \mathcal{T}_2) \text{ is pairwise totally disconnected, while } (X, \mathcal{T}_1) \text{ and } (X, \mathcal{T}_2) \text{ are connected. In contrast to the topological situation, components of bitopological spaces need not be closed. Here, for example, <math>\{d\}$ is a component of $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $\mathcal{T}_1 \operatorname{cl} \{d\} = \{c, d\}, \mathcal{T}_2 \operatorname{cl} \{d\} = \{b, d\}, \text{ so that } \{d\} \text{ is neither } \mathcal{T}_1 \operatorname{closed} \text{ nor } \mathcal{T}_2 \operatorname{closed}. \text{ Notice that } \{d\} = \mathcal{T}_1 \operatorname{cl} \{d\} \cap \mathcal{T}_2 \operatorname{cl} \{d\}$ as required by Theorem F of Pervin [3].

PROPOSITION 2. If $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a bitopological space such that (X, \mathcal{T}_1) is T_1 and if X has a \mathcal{T}_1 open base whose members are also \mathcal{T}_2 closed then

 $(X, \mathcal{T}_1, \mathcal{T}_2)$ is pairwise totally disconnected.

PROOF. Let x and y be distinct points of X. There is a \mathscr{T}_1 open set U such that $x \in U$ and $y \notin U$. By hypothesis, there is a basic \mathscr{T}_1 open set B which is also \mathscr{T}_2 closed such that $x \in B \subset U$. Then $X = B | X \sim B$ is a separation of X which separates x and y.

University of Warwick Coventry, England University of Auckland Auckland, New Zealand

REFERENCES

- Birsan, T. Sur les espaces bitopologiques connexes. An. Sti. Univ. Al. I. Cuza Iași, n. Ser., Sect. Ia 14(1968), 293-296.
- [2] Kelly, J.C. Bitopological spaces. Proc. London Math. Soc. 13(1963), 71-89.
- [3] Pervin, W. J. Connectedness in bitopological spaces. Akad. van Wetenschappen, Amsterdam, Proc. Series A 70(1967), 369-372.