LOCAL DISCRETE EXTENSIONS OF TOPOLOGIES

By Young Soo Park

In this paper, we introduce a new concept of extension called as local discrete extensions. This concept is motivated by [2]. Let (X, \mathcal{F}) be a topological space and A be a subset of X. Then the topology $\mathcal{F}[A] = \{U \sim B | U \in \mathcal{F}, B \subset A\}$ is called a local discrete extensions of \mathcal{F} by A. It is clear that $\mathcal{F}[A]$ is a topology for X, for $\bigcup_{\alpha} (U_{\alpha} \sim B_{\alpha}) = \bigcup_{\alpha} U_{\alpha} \sim (A \sim \bigcup_{\alpha} (U_{\alpha} \sim B_{\alpha}))$ for some $(U_{\alpha} \sim B_{\alpha}) \in \mathcal{F}[A]$. A topological space is called \aleph -compact if each open cover has a subcover whose cardinal is less than or equals to \aleph . This \aleph denote an arbitrary cardinal number.

We attempt to investigate that, if (X, \mathcal{T}) has some topological property P, under what conditions will $(X, \mathcal{T}[A])$ also have property P. For a subset A of a topological space X, cl A denotes \mathcal{T} -closure of A, Int A denotes \mathcal{T} -interior of A, and cl* A denotes $\mathcal{T}[A]$ -closure of A, and Int* A denotes $\mathcal{T}[A]$ -interior of A, and B' denotes the complement $X \sim B$ of B. The termiology coincides with Kelley [1].

LEMMA 1. Let A be any subset of (X, \mathcal{T}) . Then $(A, \mathcal{T}[A] \cap A)$ is a discrete space.

PROOF. It is clear from the definition of $\mathcal{T}[A]$.

THEOREM 2. Let A be a closed subset of (X, \mathcal{F}) . Then $(A, \mathcal{F} \cap A)$ is a discrete subspace of (X, \mathcal{F}) if and only if $\mathcal{F} = \mathcal{F}[A]$.

PROOF. Let $U \sim B$ be any open in $(X, \mathcal{T}[A])$. Since A is a closed in (X, \mathcal{T}) , B is a closed in (X, \mathcal{T}) . Therefore $U \sim B$ is an open in (X, \mathcal{T}) . Hence we have $\mathcal{T} = \mathcal{T}[A]$. The converse follows directely from lemma 1.

THEOREM 3. Let (X, \mathcal{T}) be a topological space and $\mathcal{T}[A]$ be a local discrete extension of \mathcal{T} . Let B be any subset of (X, \mathcal{T}) . Then

(1) $\operatorname{cl}^*B = (A \cap B) \cup \operatorname{cl}(A' \cap B)$.

(2) Int* $B = (A' \cup B) \cap \text{Int}(A \cup B)$. In Particular, if A is a closed subset of (X, \mathscr{T}) , then $\text{cl}^*(A \cup B) = \text{cl}(A \cup B)$ and $\text{Int}^*(A \cup B) = \text{Int}(A \cup B)$.

PROOF: (1). If $A \subseteq B$, then Int* B = IntB. If A and B are disjoint, then $cl^*B = cl^*$. Therefore we have $cl^* B = cl^*(A \cap B) \cup cl^*(A' \cap B)$. Since $A \cap B$ is a $\mathcal{F}[A] = cl^*$.

Young Soo Park

closed, $cl^*B = (A \cap B) \cup cl(A' \cap B)$. (2) follows immediately from (1).

THEOREM 4. If (X, \mathcal{T}) is regular or normal and A is an open subset of X, then $(X, \mathcal{T}[A])$ is regular or normal.

PROOF. We prove the theorem only for regular. Let A be an open subset of (X, \mathcal{F}) . Then every subset of A is $\mathcal{F}[A]$ - open set. Let F be a closed subset of $(X, \mathcal{F}[A])$ and let $x \notin F$. Then there exists a $\mathcal{F}[A]$ - open set $U \sim B$ such that $F = (U \sim B)'$. Hence $x \notin U'$ and $x \notin B$. There are two cases. Case (i) $x \notin A$. Since (X, \mathcal{F}) is regular, for each $x \notin U'$, there exist disjoint open sets U and V such that $x \in U$ and $U' \subset V$. Hence there are disjoint $\mathcal{F}[A]$ - open sets $U \sim A$ and $V \cup B$ such that $x \in U \sim A$ and $F \subset V \cup B$. Case (ii). $x \in A$. this is clear.

THEOREM 5. $If(X, \mathcal{T})$ is completely regular and A is an open subset of X, then $(X, \mathcal{T}[A])$ is completely regular.

PROOF. Let V be a $\mathscr{T}[A]$ - open and let $x \in V$. Then there exists a $\mathscr{T}[A]$ - open set $U \sim B$ such that $V = (U \sim B)'$. Since (X, \mathscr{T}) is completely regular, there is a \mathscr{T} - continuous function f on X to [0,1] such that f(x)=0 and f is identically one on $X \sim U$. Defining $f^*(x) = \begin{cases} f(x) & \text{on } (U \cap B)' \\ 1 & \text{on } U \cap B, \end{cases}$

then f^* is a $\mathcal{T}[A]$ - continuous function on X to [0,1]. For, there are two cases. Case (i). $y \notin A$. Since f is a \mathcal{T} - continuous, there is a \mathcal{T} - neighourhood N(y) of y such that $f(N(y)) \subset N(f(y))$. Therefore $f^*(N(y) \sim A) \subset N(f(y))$, and hence f^* is a $\mathcal{T}[A]$ - continuous. Case (ii). $y \in A$. Since $\{y\}$ is a \mathcal{T} -open, it is clear.

COROLLARY 6. If (X, \mathcal{F}) is Tychonoff and A is an open subset of X, then $(X, \mathcal{F}[A])$ is Tychonoff.

REMARK 7. In case that A is not an open subset of (X, \mathcal{T}) , in general. above theorem 4. 5. does not hold.

EXAMPLE (1). Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\phi, X\}$. Then (X, \mathcal{T}) is regular and normal. But $(X, \mathcal{T} [\{a, b\}])$ is neither.

EXAMPLE (2). Let $X = \{a, b\}$ and $\mathcal{T} = \{\phi, X\}$. Then (X, \mathcal{T}) is completely regular. But $(X, \mathcal{T}[a])$ is not.

THEOREM 8. If (X, \mathcal{T}) is a second countable space, then $(X, \mathcal{T}[A])$ is a second countable space if and only if A is a countable subset of (X, \mathcal{T}) .

PROOF. "only if". Let \mathcal{L} be a countable base of (X, \mathcal{T}) and

let $\mathscr{L}_A = \{B \sim A_\alpha | B \in \mathscr{L}, A_\alpha \text{ is cofinite subset of } A\}$. Then, \mathscr{L}_A is a countable and a base of $\mathscr{T}[A]$. For, let $x \in B \sim A_1$ and $A_1 \subset A$. If A_1 is a cofinite subset in A, it is clear. If A_1 is not cofinite subset in A, then $A \sim A_1$ is not finite. There are two cases. Case (i). $x \notin A$. Then $x \notin B \sim A \subset B \sim A_1$. Case (ii). $x \in A$. Then $x \in B \sim (A \sim \{x\}) \subset B \sim A_1$.

"If". Suppose that A is not a countable. Since $(A, \mathcal{F}[A] \cap A)$ is a discretesubspace by lemma 1. and A is not countable, $(A, \mathcal{F}[A] \cap A)$ is not second countable space. It is a contradiction.

THEOREM 9. Let A be any subset of (X, \mathcal{T}) . Then (X, \mathcal{T}) is a first countable if and only if $(X, \mathcal{T}[A])$ is a first countable space.

PROOF. Let $\{U_i | i=1, 2, \dots\}$ be a countable local base at any point x of X. There are two cases. Case (i). $x \notin A$. Then $\{U_i \sim A | i=1, 2, \dots\}$ is a countablelocal base of a point x of $(X, \mathcal{T}[A])$. Case (ii). $x \notin A$. Then $\{U_i \sim (A \sim \{x\}) | i=1, 2, \dots\}$ is a countable local base of a point x of $(X, \mathcal{T}[A])$.

THEOREM 10. Let (X, \mathcal{T}) be a \aleph -compact (countably compact). Then A has the cardinal number \aleph (finite) if and only if $(X, \mathcal{T}[A])$ is a \aleph -compact (countably compact).

PROOF. We prove the theorem only for the \aleph -compact. "only if". Let $\{U_{\alpha} \sim B_{\alpha} \mid \alpha \in A\}$ be an open covering of $(X, \mathscr{T}[A])$. Then $\{U_{\alpha} \mid \alpha \in \mathcal{A}\}$ is an open covering of (X, \mathscr{T}) . Since (X, \mathscr{T}) is a \aleph -compact, there is a subcovering $\{U_{\beta} \mid \beta \in \mathcal{A}, \mathscr{L} \subset \mathcal{A}\}$ of $\{U_{\alpha} \mid \alpha \in \mathcal{A}\}$, where $|\mathscr{L}| \leq \aleph$. Choose $U_r \sim B_r$ such that $a \in U_r \sim B_r$ for each $a \in \mathcal{A}$. Let $\mathscr{L} = \{r \in \mathcal{A} \mid a \in U_r \sim B_r$ for each $a \in A\}$. Since $|A| = \aleph \mid \mathscr{L}| \leq \aleph$. Hence we have $X = A \cup (X \sim A) = [\bigcup \{U_r \sim B_r \mid r \in \mathcal{L}\}] \cup [\bigcup \{U_\beta \sim B_\beta \mid \beta \in \mathcal{L}\}] = \bigcup \{U_\delta \sim B_\delta \mid \delta \in \mathcal{L} \cup \mathscr{L}\}$, where $\mathscr{L} \cup \mathscr{L} \subset \mathcal{A}, \mid \mathscr{L} \cup \mathscr{L} \mid \leq \aleph$. Hence $(X, \mathscr{T}[A])$ is a \aleph -compact. "If". Suppose that $|A| \neq \aleph$. Since A is a $\mathscr{T}[A]$ -closed, $(A, \mathscr{T}[A] \cap A)$ is \aleph -compact. On the other hand, $(A, \mathscr{T}[A] \cap A)$ is a discrete subspace by lemma 1. Since $|A| \neq \aleph$, $(A, \mathscr{T}[A] \cap A)$ is not a \aleph -compact. It is a contradiction.

THEOREM 11 · If A and B are subsets of (X, \mathcal{T}) , then $\mathcal{T}[A][B] = \mathcal{T}[A \cup B]$. PROOF. This is clear from the definition of $\mathcal{T}[A]$.

THEOREM 12. Let (X, \mathcal{F}) and (Y, \mathcal{U}) be topological spaces. If A and B are subsets

of X and Y respectively, then $(\mathcal{T} \times \mathcal{U})$ $[A \times B] \subset \mathcal{T} [A] \times \mathcal{U} [B]$.

PROOF. Let $U \in (\mathscr{T} \times \mathscr{U})$ $[A \times B]$. Then $U = G \sim C$, where $G \in \mathscr{T} \times \mathscr{U}$ and $C \subset A \times B$. If $x \in U$, then there is a basic open set $E \times F$ such that $x \in E \times F \subset G$. Let $x = (x_1, x_2)$. Then we have a basic open set $E \sim (A \sim \{x_1\}) \times F \sim (B \sim \{x_2\})$ in $\mathscr{T}[A] \times \mathscr{U}[B]$ such that $x \in E \sim (A \sim \{x_1\}) \times F \sim (B \sim \{x_2\}) \subset G \sim C$. Hence $G \sim C \in \mathscr{T}[A] \times \mathscr{U}[B]$.

REMARK 13. The converse inclusion of theorem 12 need not be true. For example, let X be the real line with usual topology ξ . Let A be the set of all rational numbers. Then $\hat{\xi}[A] \times \hat{\xi}[A]$ is not contained in $(\hat{\xi} \times \hat{\xi})$ $[A \times A]$.

Kyungpook University

REFERENCES

- [1] J.L. Kelley, General Topology, New York, Van Nostrand, 1955.
- [2] J. Greever, On some generalized compactness properties, Publ. RIMS. Kyoto Univ. Ser. A., Vol. 4(1968), 39-49.