A NOTE ON SINGULARITY OF MEASURES

By Hae Soo Oh

In this note we shall give some characterizations of singularity and S-singularity for measures, and from these characterizations we have an interisting result about decomposition in product measures.

Following definitions are due to Johnson [1].

DEFINITIONS. Let μ and ν be measures on σ -ring \mathscr{S} of subsets of X. A set A is called a *locally measurable* if $A \cap E$ is measurable for each measurable set E.

We say that μ and ν are (*mutually*) singular, and we write $\mu \perp \nu$, if there exists a locally measurable set A such that $\mu(E \cap A) = 0 = \nu(E-A)$ for each $E \in \mathscr{S}$. It is equivalent to the fact that there exist disjoint measurable sets B and C such that $B \cup C = E, \mu(B) = \nu(C) = 0$ for each $E \in \mathscr{S}$.

We also say that ν is S-singular with respect to μ , denoted by $\nu S\mu$, if given $E \in \mathscr{S}$, there is a measurable $F \subset E$ such that $\mu(E) = \nu(F)$ and $\mu(F) = 0$.

We shall call that μ is *absolutely continuous* with respect to ν , in symbols $\mu \langle \langle \nu, \text{ if } \mu(E) = 0 \text{ for every measurable set } E \text{ for which } \nu(E) = 0.$

Other definition and terminology follow those in Halmos [7].

In order to prove our main result we have the following.

LEMMA 1. Let μ and ν be measures on σ -ring \mathscr{S} which is generated by a class \mathscr{F} of sets. Then the following are equivalent:

(a) $\mu \perp \nu$

(b) for each $E \in \mathscr{F}$, there exists a locally measurable set A such that $\mu(E \cap A) = \nu(E-A) = 0$.

PROOF. (b) implies (a): Let $\mathfrak{M} = \{E \mid \text{there exist a locally measurable } A \text{ such that } \mu(E \cap A) = 0 = \nu(E-A) \}$. Now we claim that \mathfrak{M} is σ -ring. Let $\{E_n\}$ be a sequence in \mathfrak{M} . Then, for each n, there exist B_n and C_n such that $\mu(B_n) = \nu(C_n) = 0$, $B_n \cap C_n = \phi$, and $B_n \cup C_n = E_n$.

Now let $\bigcup_n B_n = B$, $\bigcup_n C_n = C$, and $\bigcup_n E_n = E$. Then $\mu(B-C) = 0$, $\nu(C) = 0$, and $(B - C) \cup C = E$. Hence we have $\bigcup_n E_n = E \in \mathfrak{M}$. Clearly we know that \mathfrak{M} is closed

under the formation of differences. These facts imply that $\mathscr{G}\subset\mathfrak{M}$. Thus we have $\mu\perp\nu$.

(a) implies (b): This part is obvious from the meaning of generator.

Using above lemma, we have the following characterization of singularity for measures.

THEOREM 2. Let μ_1 and μ_2 be σ -finite measures on σ -ring \mathscr{S} . Then the following are equivalent:

(a) $\mu_1 \perp \mu_2$.

(b) $(\mu_1 \times \nu) \perp (\mu_2 \times \lambda)$ for arbitrary σ -finite measures ν and λ , which are defined in the same measurable space.

PROOF. (a) implies (b): Suppose $\mu_1 \perp \mu_2$, and let ν and λ be given two σ -finite measures on the same measurable space. Now let $E \times F$ be a measurable rectangle on the product space in which $\mu_1 \times \nu$ and $\mu_2 \times \lambda$ is defined. Then there exist B and C such that $B \cup C = E$, $B \cap C = \phi$, $\mu_1(B) = \mu_2(C) = 0$. Hence we have $(B \times F) \cap (C \times F) = \phi$, $(B \times F) \cup (C \times F) = E \times F$, and $\mu_1 \times \nu(B \times F) = \mu_1(B) \cdot \nu(F) = 0$, $\mu_2 \times \lambda(C \times F) = \mu_2(C) \cdot \lambda(F) = 0$. Since the family of all measurable rectangle acts as generator in the product measure space, we have $(\mu_1 \times \nu) \perp (\mu_2 \times \lambda)$ from lemma 1.

(b) implies (a): Suppose $(\mu_1 \times \nu) \perp (\mu_2 \times \lambda)$ for any σ -finite measures ν and λ with the same domain. Now let Y be a nonvoid countable set and $\mathscr{P}(Y)$ be the family of all subsets of Y. Define a measure on $\mathscr{P}(Y)$ by $\nu(F)$ =the number of elements of F, for each $F \in \mathscr{P}(Y)$. Then, from the hypothesis, we have $(\mu_1 \times \nu) \perp (\mu_2 \times \nu)$.

Let *E* be a member in \mathscr{S} and *F* be a nonvoid subset of *Y*, then there exist *B* and *C* such that $B \cup C = E \times F$, $B \cap C = \phi$ and $\mu_1 \times \nu(B) = 0 = \mu_2 \times \nu(C)$, *B* and *C* in $\mathscr{S} \times \mathscr{S}(Y)$. Since $B^y = \{x \mid (x, y) \in B\}$ is a measurable set in \mathscr{S} and *Y* is a countable set, $P[B] = \{x \mid (x, y) \in B\} = \bigcup \{E^y \mid y \in Y\}$ is a measurable set in \mathscr{S} .

In the case that $P[B] \subseteq E$, we have

$$0 = \mu_1 \times \nu(B) = \int \nu(B_x) \ d\mu_1(x) \ge \int_{P[B]} 1 d\mu_1 = \mu_1(P[B]),$$

$$0 = \mu_2 \times \nu(C) = \int \nu(C_x) d\mu_2(x) \ge \int_{E-P[B]} 1 d\mu_2 = \mu_2(E-P[B])_*$$

14

On the other case, P[B] = E, we have

$$0 = \mu_1 \times \nu(B) = \int \nu(B_x) d\mu_1(x) \ge \int_E 1 d\mu_1 = \mu_1(E).$$

These facts implies that $\mu_1 \perp \mu_2$.

REMARK 3. From the fact that, if μ_1 and μ_2 are σ -finite measure on σ -ring \mathscr{S} , $\mu_1 \perp \mu_2$ if and only if $\mu_1 S \mu_2$ [3], we can rewrite above theorem with respect to S-singular as follow:

The relation $\mu_1 S \mu_2$ is equivalent to the fact that $(\mu_1 \times \nu) S(\mu_2 \times \lambda)$ for any measures ν and λ with the same domain.

Thus it is obvious that singularity and S-singularity is productive. On the other hand, we can prove directly that S-singularity is productive, but it is so tedious.

Now we apply these results to a decomposition of measure in the product measure space.

THEOREM 4. Let λ_1 and λ_2 be σ -finite measure on measurable space $(X \times Y, \mathscr{G} \times \mathscr{F})$ such that $\lambda_1 = \mu \times \nu$, $\lambda_2 = \mu' \times \nu'$ in the sence of Halmos [7] and $\nu' \langle \langle \nu$. Then there exist a unique decomposition $\lambda_2 = (\alpha_1 \times \nu') + (\alpha_2 \times \nu')$ of λ_2 into the sum of $\alpha_1 \times \nu'$ and $\alpha_2 \times \nu'$ such that $\alpha_1 \times \nu' \langle \langle \lambda_1, (\alpha_2 \times \nu') S \lambda_1, and (\alpha_1 \times \nu') S(\alpha_2 \times \nu')$, where α_1 and α_2 are two measures on \mathscr{G} .

PROOF. By Luther's result [2], there exist a unique decomposition $\mu' = \alpha_1 + \alpha_2$ of μ' into the sum of α_1 and α_2 such that $\alpha_1 \langle \langle \mu, \alpha_2 S \mu, \alpha_1 S \alpha_2 \rangle$. From the above remark, we have $(\alpha_2 \times \nu')S(\mu \times \nu)$, $(\alpha_1 \times \nu')S(\alpha_2 \times \nu')$. Since $\nu' \langle \langle \nu \rangle$ and $\alpha_1 \langle \langle \mu, \rangle \rangle$, we have $(\alpha \times \nu') \langle \langle \langle (\mu \times \nu) \rangle \rangle$ [6]. Finally we have $(\alpha_1 + \alpha_2) \times \nu' = (\alpha_1 \times \nu') + (\alpha_2 \times \nu')$ [5]. Thus we obtain the required result.

On the contrary, if we apply above method to a decomposition of ν' , the fact that a decomposition satisfying the condition mentioned above exist uniquely implies the following.

COROLLARY 5. Under the same hypothesis as before, if we have $\nu'\langle\langle \nu \rangle$ and $\nu\langle\langle \nu' \rangle$ then we have

 $(a)(\mu' \times \beta_1) = (\alpha_1 \times \nu') \text{ and } (b)(\mu' \times \beta_2) = (\alpha_2 \times \nu'),$ where $\mu' = \alpha_1 + \alpha_2$, $\alpha_1 \langle \langle \mu, \alpha_2 S \mu, \alpha_1 S \alpha_2, and \nu' = \beta_1 + \beta_1, \beta_1 \langle \langle \nu, \beta_2 S \nu, \beta_1 S \beta_2 \rangle$.

Kyungpook University

REFFERENCES

- R. A. Johnson, On the Lebesque Decomposition Theorem, Proc. Amer. Math., (1967), Vol. 18, pp. 628-632.
- [2] N.Y. Luther, Lebesque Decomposition and weakly Borel Measures, Duke Math. J. (1968), Vol. 35, pp. 601-615.
- [3] J.S. Woo and I.S. Lee, A note on Atomic measure and singularity, Kyungpook Math J., (1970), Vol. 10, pp. 85-88.
- [4] H.S. Oh, Notes on Atomic Measures, Kyungpook Math. J. (1970), Vol. 10, pp. 81-83.
- [5] S.K. Berberian, Measure and Integration, Macmillan, New York, (1965).
- [6] E. Hewitt and K. Stromberg, *Real and Abstract Analysis*, Springer Verlag, Berlin (1969).
- [7] P.R. Halmos, Measure Theory, Van Nostrand, Princeton, N.J., (1950).