A NOTE ON SINGULARITY OF MEASURES

By Hae Soo Oh

In this note we shall give some characterizations of singularity and S-singularity for measures, and from these characterizations we have an interisting result. about decomposition in product measures.
Following definitions are due to Johnson [1].
Definitions. Let μ and ν be measures on σ-ring \mathscr{S} of subsets of X. A set A is called a locally measurable if $A \cap E$ is measurable for each measurable set E.
We say that μ and ν are (mutually) singular, and we write $\mu \perp \nu$, if there exists. a locally measurable set A such that $\mu(E \cap A)=0=\nu(E-A)$ for each $E \in \mathscr{G}$. It is equivalent to the fact that there exist disjoint measurable sets B and C such that $B \cup C=E, \mu(B)=\nu(C)=0$ for each $E \in \mathscr{S}$.
We also say that ν is S-singular with respect to μ, denoted by $\nu S \mu$, if given $E \in \mathscr{S}$, there is a measurable $F \subset E$ such that $\mu(E)=\nu(F)$ and $\mu(F)=0$.
We shall call that μ is absolutely continuous with respect to ν, in symbols. $\mu<\langle\nu$, if $\mu(E)=0$ for every measurable set E for which $\nu(E)=0$.

Other definition and terminology follow those in Halmos [7].
In order to prove our main result we have the following.
Lemma 1. Let μ and ν be measures on σ-ring \mathscr{S} which is generated by a class \mathscr{F} of sets. Then the following are equivalent:
(a) $\mu \perp \nu$
(b) for each $E \in \mathscr{F}$, there exists a locally measurable set A such that $\mu(E \cap A)=$ $\nu(E-A)=0$.

PROOF. (b) implies (a): Let $\mathfrak{R}=\{E \mid$ there exist a locally measurable A such that $\mu(E \cap A)=0=\nu(E-A)\}$. Now we claim that \mathfrak{M} is σ-ring. Let $\left\{E_{n}\right\}$ be a sequence in \mathfrak{M}. Then, for each n, there exist B_{n} and C_{n} such that $\mu\left(B_{n}\right)=\nu\left(C_{n}\right)$ $=0, B_{n} \cap C_{n}=\phi$, and $B_{n} \cup C_{n}=E_{n}$.
Now let $\bigcup_{n} B_{n}=B, \bigcup_{n} C_{n}=C$, and $\bigcup_{n} E_{n}=E$. Then $\mu(B-C)=0, \nu(C)=0$, and (B $-C) \cup C=E$. Hence we have $\bigcup_{n} E_{n}=E \in \mathfrak{M}$. Clearly we know that \mathfrak{K} is closed
under the formation of differences. These facts imply that $\mathscr{S} \subset \mathfrak{M}$. Thus we have $\mu \perp \nu$.
(a) implies (b): This part is obvious from the meaning of generator.

Using above lemma, we have the following characterization of singularity for measures.

THEOREM 2. Let μ_{1} and μ_{2} be σ-finite measures on σ-ring \mathscr{S}. Then the following are equivalent:
(a) $\mu_{1} \perp \mu_{2}$.
(b) $\left(\mu_{1} \times \nu\right) \perp\left(\mu_{2} \times \lambda\right)$ for arbitrary σ-finite measures ν and λ, which are defined in the same measurable space.

PROOF. (a) implies (b): Suppose $\mu_{1} \perp \mu_{2}$, and let ν and λ be given two σ-finite measures on the same measurable space. Now let $E \times F$ be a measurable rectangle on the product space in which $\mu_{1} \times \nu$ and $\mu_{2} \times \lambda$ is defined. Then there exist B and C such that $B \cup C=E, \quad B \cap C=\phi, \mu_{1}(B)=\mu_{2}(C)=0$. Hence we have $(B \times F) \cap(C \times F)=\phi, \quad(B \times F) \cup(C \times F)=E \times F, \quad$ and $\quad \mu_{1} \times \nu(B \times F)=\mu_{1}(B) \cdot \nu(F)$ $=0, \mu_{2} \times \lambda(C \times F)=\mu_{2}(C) \cdot \lambda(F)=0$. Since the family of all measurable rectangle acts as generator in the product measure space, we have $\left(\mu_{1} \times \nu\right) \perp\left(\mu_{2} \times \lambda\right)$ from lemma 1.
(b) implies (a): Suppose $\left(\mu_{1} \times \nu\right) \perp\left(\mu_{2} \times \lambda\right)$ for any σ-finite measures ν and λ with the same domain. Now let Y be a nonvoid countable set and $\mathscr{F}(Y)$ be the family of all subsets of Y. Define a measure on $\mathscr{P}(Y)$ by $\nu(F)=$ the mumber of elements of F, for each $F \in \mathscr{P}(Y)$. Then, from the hypothesis, we have $\left(\mu_{1} \times \nu\right) \perp\left(\mu_{2} \times \nu\right)$.

Let E be a member in \mathscr{S} and F be a nonvoid subset of Y, then there exist B and C such that $B \cup C=E \times F, B \cap C=\phi$ and $\mu_{1} \times \nu(B)=0=\mu_{2} \times \nu(C), B$ and C in \mathscr{S} $\times \mathscr{P}(Y)$. Since $B^{y}=\{x \mid(x, y) \in B\}$ is a measurable set in \mathscr{S} and Y is a countable set, $P[B]=\{x \mid(x, y) \in B\}=\bigcup\left\{E^{y}[y \in Y\}\right.$ is a measurable set in \mathscr{S}.

In the case that $P[B] \subsetneq E$, we have

$$
0=\mu_{1} \times \nu(B)=\int \nu\left(B_{x}\right) d \mu_{1}(x) \geqq \int_{P[B]} 1 d \mu_{1}=\mu_{1}(P[B]),
$$

and

$$
0=\mu_{2} \times \nu(C)=\int \nu\left(C_{x}\right) d \mu_{2}(x) \geqq \int_{E-P[B]} 1 d \mu_{2}=\mu_{2}(E-P[B]) .
$$

On the other case, $P[B]=E$, we have

$$
0=\mu_{1} \times \nu(B)=\int \nu\left(B_{x}\right) d \mu_{1}(x) \geqq \int_{\mathrm{E}} 1 d \mu_{1}=\mu_{1}(E) .
$$

These facts implies that $\mu_{1} \perp \mu_{2}$.
REMARK 3. From the fact that, if μ_{1} and μ_{2} are σ-finite measure on σ-ring \mathscr{S}, $\mu_{1} \perp \mu_{2}$ if and only if $\mu_{1} S \mu_{2}$ [3], we can rewrite above theorem with respect to S-singular as follow:

The relation $\mu_{1} S \mu_{2}$ is equivalent to the fact that $\left(\mu_{1} \times \nu\right) S\left(\mu_{2} \times \lambda\right)$ for any measures ν and λ with the same domain.

Thus it is obvious that singularity and S-singularity is productive. On the other hand, we can prove directly that S-singularity is productive, but it is so tedious.

Now we apply these results to a decomposition of measure in the product measure space.

THEOREM 4. Let λ_{1} and λ_{2} be σ-finite measure on measurable space $(X \times Y, \mathscr{S} \times$ F) such that $\lambda_{1}=\mu \times \nu, \lambda_{2}=\mu^{\prime} \times \nu^{\prime}$ in the sence of Halmos [7] and $\nu^{\prime}\langle\langle\nu$. Then there exist a unique decomposition $\lambda_{2}=\left(\alpha_{1} \times \nu^{\prime}\right)+\left(\alpha_{2} \times \nu^{\prime}\right)$ of λ_{2} into the sum of $\alpha_{1} \times \nu^{\prime}$ and $\alpha_{2} \times \nu^{\prime}$ such that $\alpha_{1} \times \nu^{\prime}\left\langle\left\langle\lambda_{1},\left(\alpha_{2} \times \nu^{\prime}\right) S \lambda_{1}\right.\right.$, and $\left(\alpha_{1} \times \nu^{\prime}\right) S\left(\alpha_{2} \times \nu^{\prime}\right)$, where α_{1} and α_{2} are two measures onS.

PROOF. By Luther's result [2], there exist a unique decomposition $\mu^{\prime}=\alpha_{1}+\alpha_{2}$ of μ^{\prime} into the sum of α_{1} and α_{2} such that $\alpha_{1} \ll \mu, \alpha_{2} S \mu$, and $\alpha_{1} S \alpha_{2}$. From the above remark, we have $\left(\alpha_{2} \times \nu^{\prime}\right) S(\mu \times \nu),\left(\alpha_{1} \times \nu^{\prime}\right) S\left(\alpha_{2} \times \nu^{\prime}\right)$. Since $\nu^{\prime}\left\langle\left\langle\nu\right.\right.$ and α_{1} $\left\langle<\mu\right.$, we have $\left(\alpha_{1} \times \nu^{\prime}\right)\left\langle\left\langle(\mu \times \nu)\right.\right.$ [6]. Finally we have $\left(\alpha_{1}+\alpha_{2}\right) \times \nu^{\prime}=\left(\alpha_{1} \times \nu^{\prime}\right)+\left(\alpha_{2}\right.$ $\left.X \nu^{\prime}\right)$ [5]. Thus we obtain the required result.

On the contrary, if we apply above method to a decomposition of ν^{\prime}, the fact that a decomposition satifying the condition mentioned above exist uniquely implies the following.

COROLLARY 5. Under the same hypothesis as before, if we have $\nu^{\prime}\left\langle\left\langle\nu\right.\right.$ and $\nu\left\langle\left\langle\nu^{\prime}\right.\right.$ then we have
(a) $\left(\mu^{\prime} \times \beta_{1}\right)=\left(\alpha_{1} \times \nu^{\prime}\right)$ and $(b)\left(\mu^{\prime} \times \beta_{2}\right)=\left(\alpha_{2} \times \nu^{\prime}\right)$,
where $\mu^{\prime}=\alpha_{1}+\alpha_{2}, \alpha_{1}\left\langle\left\langle\mu, \alpha_{2} S \mu, \alpha_{1} S \alpha_{2}\right.\right.$, and $\nu^{\prime}=\beta_{1}+\beta_{,}, \beta_{1}\left\langle\left\langle\nu, \beta_{2} S \nu, \beta_{1} S \beta_{2}\right.\right.$.

Kyungpook University

REFFERENCES

[1] R. A. Johnson, On the Lebesque Decomposition Theorem, Proc. Amer. Math., (1967). Vol. 18, pp. 628-632.
[2] N. Y. Luther, Lebesque Decomposition and weakly Borel Measures, Duke Math. J. (1968), Vol. 35, pp. 601-615.
[3] J. S. Woo and I. S. Lee, A note on Atomic measure and singularity, Kyungpook Math J. , (1970), Vol. 10, pp. 85-88.
[4] H.S. Oh, Notes on Atomic Measures, Kyungpook Math. J. (1970), Vol. 10, pp. 81-83.
[5] S. K. Berberian, Measure and Integration, Macmillan, New York, (1965).
[6] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer Verlag, Berlin (1969).
[7] P. R. Halmos, Measure Theory, Van Nostrand, Princeton, N. J. , (1950).

