SELECTIONS AND UNITARY ACTIONS OF SEMIGROUPS.

By J. T. Borrego and E. E. DeVun

1. Introduction. An action is a continuous function $\alpha: T \times X \to X$ where T is a (topological) semigroup, X is a Hausdorff space, and $\alpha(t_1t_2, x) = \alpha(t_1, \alpha(t_2, x))$. We shall also assume that T and X are compact and that α is onto. We write tx for $\alpha(t, x)$ and AB for $\{tx | t \in A, x \in B\}$. The action α induces a closed quasi-order $\{(x, y) | Tx \subset Ty\}$ on X[2]; $M(\alpha)$ is the set of all maximal elements of X under this quasi-order. The α -orbit of a point x in X is Tx. An action is called unitary if $x \in Tx$ for all $x \in X$. Here we shall be concerned with unitary actions. The reader is referred to [4], [5], [9], and [10] for information concerning the general theory of semigroups.

A multi-valued function F from X to Y associates with each $x \in X$ a non empty subset F(x) of Y. F is continuous if and only if $\{x_n\}$ is a net convergence to x implies $F(x_n)$ converges to F(x) [8] and F(x) is closed for all $x \in X$. Associated with any action α there are two multivalued functions $F: T \to X$ defined by $F(t)=t(M(\alpha))^*$ (where * indicates topological closure) and $G: X \to X$ defined by G(X)=Tx. These functions are continuous [9]. Here we are interested in the converse, i. e., given F and G when is it possible to construct a unitary action α such that $\alpha(T \times \{x\})=G(x)$ for all $x \in X$. We shall give conditions on Fand G which enable us to construct a disjoint unitary action of T on X. Using this construction we shall give a new proof of a theorem due to Stadtlander [6]. The methods used here are very similar to those of [2] and [8].

The reader is referred to [7] for a more complete treatment of multivalued functions.

2. Main Theorem. An *aw*-homomorphism between two actions $\alpha_1 : T_1 \times X_1 \to X_1$ and $\alpha_2 : T_2 \times X_2 \to X_2$ is a pair (g, f) where g is a continuous homomorphism of T_1 onto T_2 , f is a continuous function of X_1 onto X_2 and $f\alpha_1(t, x) = \alpha_2(g(t), f(x))$ for all $t \in T$ and all $x \in X$. An action α is *disjoint* if and only if $\{Tx | x \in M(\alpha)\}$ is pairwise disjoint. The following proposition enables us to restrict our attention to disjoint actions.

J.T. Borrego and E.E. DeVun

PROPOSITION 1. If $\alpha:T \times X \to X$ is a unitary action, then there is a compact, Hausdorff space Y and an action $\beta:T \times Y \to Y$ such that β is disjoint, $M(\beta)$ is closed and α is an aw-homomorphic image of β .

This proposition is very similar to Theorem 5 of [2] and a slight modification of the proof to that theorem will prove this proposition.

Let X be a compact Hausdorff space and K be a continuous multivalued function of X onto X. Then $P(K) = \{(x, y) | K(x) \subset K(y)\}$ is a closed quasi-order on X and let M(K) be the set of maximal elements of X under P(K). A disjoint unitary orbit function on X is a continuous multivalued function G of X onto X such that $x \in G(x)$ for all $x \in X$, if $x \in G(y)$ then G(x) is contained in G(y) and $\{G(b) | b \in M(G)\}$ is a pairwise disjoint collection of subsets of X. Let T be a compact semigroup. A Tselector for a disjoint unitary orbit function G on X is a continuous multivalued function $F:T \to X$ such that for $b \in M(G)$, the function $f_b:T \to G(b)$ defined by $f_b(t) = F(t) \cap G(b)$ is a left-multiplicative single-valued onto function and if $x \in F(t)$ $\cap G(b), b \in M(G)$, then $G(b) \cap F(Tt) = G(x)$. (A left-multiplicative function h on a semigroup T is a function such that $\{(t, t') | h(t) = h(t')\}$ is a left congruence of T.)

The following remark indicates the motivation for the above definition.

REMARK 2. Let $\alpha: T \times X \to X$ be a disjoint, unitary action. Then $G: X \to X$ defined by G(x) = Tx is a disjoint, unitary orbit function. If $B = B^* \subset M(\alpha)$, TB = X and card $G(x) \cap B = 1$ for $x \in M(\alpha)$, then $F: T \to X$ defined by F(t) = tB is a T-selection. The proof is routine.

THEOREM 3. Let X be a compact Hausdorff space, G be a disjoint unitary orbit function on X, T be a compact semigroup, and let F be a T-selector for G. If $\alpha:T \times X \to X$ is defined by $\alpha(t, x) = f_b(tf_b^{-1}(x))$ where $b \in M(G)$ and $x \in G(b)$, then α is a disjoint unitary action with $\alpha(T \times \{x\}) = G(x)$.

PROOF. Since f_b is left multiplicative for $b \in M(G)$ and $\{G(b) | b \in M(G)\}$ is pairwise disjoint, α is well-defined.

Next, we shall show that α is continuous. Let $\{t_n\}$ be a net in T converging to t, $\{x_n\}$ be a net in X converging to x, $b_n \in M(G)$ such that $x_n \in G(b_n)$. Let $b \in M(G)$ such that $x \in G(b)$, let $t'_n \in f_{b_*}^{-1}(x_n)$, z be a cluster point of $\{\alpha(t_n, x_n)\}$ and let t' be a cluster point of $\{t'_n\}$. By selecting subnets we may suppose $\{\alpha(t_n, x_n)\}$ converges to z and $\{t'_n\}$ converges to t'. Since $F(Tt'_n) \cap G(b_n) = G(x_n)$, $\alpha(t_n, x_n)$

10

 $=f_{b_*}(t_n f_{b_*}^{-1}(x_n)) \in G(x_n) \text{ and thus } z \in G(x) \subset G(b). \text{ Because } \alpha(t_n, x_n) \in F(t_n t_n'), z \in F(tt') \cap G(b) = f_b(tt'). \text{ But } x_n \in F(t_n') \text{ implies } x \in F(t') \text{ so that } \alpha(t, x) = f_b(tt') = z.$

It is easily shown that $\alpha(t_1, \alpha(t_2, x)) = \alpha(t_1t_2, x)$ for $t_1, t_2 \in T$ and $x \in X$ and that $\alpha(T \times \{x\}) = G(x)$ for $x \in X$.

A K-space is a pair (X, K) where X is a compact metric space and K is a continuous multivalued function from X onto X such that:

(1) If $x \in K(y)$, then $K(x) \subset K(y)$

(2) If K(x) = K(y), then x = y

(3) $x \in K(x)$ for all $x \in X$

(4) K(x) is a metric arc (homeomorphic to [0,1] or a point) with one endpoint x and one endpoint in $L(K) = \{x \in X | x \text{ is minimal in } P(K)\}$.

(5) Card $(K(x) \cap L(K)) = 1$ for all $x \in X$.

This definition is different in form to the definition given by Stadtlander [6] but the two definitions are equivalent.

A thread is a semigroup which is homeomorphic to [0,1] and in which one endpoint is an identity and the other is a zero. The following corollary concerning thread actions can be found in [6]. The proof presented there is different.

COROLLARY 4. Let T be a thread and (X, K) be a K-space. Then there is a unitary action T on X with 0X = L(K) where 0 is the zero of T.

PROOF. Define $p: X \to L(K)$ by $p(x) = L(K) \cap K(x)$. Then p is a retraction [9].

Carruth [3] has shown that there is a metric d for X which is convex with respect to P(K), i.e., $K(x) \subset K(y) \subset K(z)$ implies $d(x, y) \leq d(x, z)$. We may also assume d is bounded by 1 and T = [0, 1]. Thus, the function $k: M(K)^* \to T$ by k(b) = d(b, p(b)) is continuous.

Let $Y = \bigcup \{K(b) \times \{b\} | b \in M(K)^*\}$. Define $G: Y \to Y$ by $G(y, b) = K(y) \times \{b\}$. It is easily verified that G is a disjoint unitary orbit function and $M(G) = \{(b, b) | b \in M(K)^*\}$. Define $F: T \to Y$ by $F(t) = \{(x, b) | d(x, p(b)) = tk(b)\}$. By an argument similar to the one used in Theorem 2.6 of [9], F is continuous and it is routine to verify that F is a T-selector for G. Let α be the action given by Theorem 1. Let $\pi_1: Y \to X$ be the first projection. It is a simple computation to verify that if $\pi_1(y) = \pi_1(x)$ then $\pi_1\alpha(t, x) = \pi_1\alpha(t, y)$ for $t \in T$. Thus, there is an action β from $T \times X$ onto X defined by $\beta(t, x) = \pi_1\alpha(t, y)$ where $\pi_1(y) = x[1, 2]$. University of Massachusetts, Amherst, Massachusetts Wichita State University, Wichita, Kansas

REFERENCES

- A. R. Bednarek and A. D. Wallace, Equivalences on machine state spaces, Mat Casopsis Sloven Akad. Vied. 17(1967)1-7.
- [2] J.T. Borrego and E.E. DeVun, Maximal semigroup orbits (to appear).
- [3] J.H. Carruth, A note on partially ordered compacta, Pac. J. Math. 24(1968)229-231
- [4] K. H. Hoffmann and P. S. Mostert, *Elements of compact semigroups*, C. E. Merrill Books, Columbus, Ohio (1966)
- [5] A.B. Paalman de Miranda, Topological semigroups, Mathematical Center, Amsterdam (1964).
- [6] D.P. Stadtlander, Thread actions, Duke Math. J. 35(1968), 483-490.
- [7] W. L. Strother, Continuous multivalned functions, Bol. Soc. Math São Paulo 10(1955) 87-120.
- [8] E.D. Tymchatyn, Antichains and products in partially ordered spaces, (to appear).
- [9] A. D. Wallace, *Topological semigroups*, Lecture Notes by J. M. Day, University of Florida (1964).
- [10] A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 51 (1945)413-416.