SELECTIONS AND UNITARY ACTIONS OF SEMIGROUPS.

By J. T. Borrego and E. E. DeVun

1. Introduction. An action is a continuous function $\alpha: T \times X \rightarrow X$ where T is a (topological) semigroup, X is a Hausdorff space, and $\alpha\left(t_{1} t_{2}, x\right)=\alpha\left(t_{1}, \alpha\left(t_{2}, x\right)\right)$. We shall also assume that T and X are compact and that α is onto. We write $t x$ for $\alpha(t, x)$ and $A B$ for $\{t x \mid t \in A, x \in B\}$. The action α induces a closed quasiorder $\{(x, y) \mid T x \subset T y\}$ on $X[2]$; $M(\alpha)$ is the set of all maximal elements of X under this quasi-order. The α-orbit of a point x in X is $T x$. An action is called unitary if $x \in T x$ for all $x \in X$. Here we shall be concerned with unitary actions. The reader is referred to [4], [5], [9], and [10] for information concerning the general theory of semigroups.

A multi-valued function F from X to Y associates with each $x \in X$ a non empty subset $F(x)$ of $Y . F$ is continuous if and only if $\left\{x_{n}\right\}$ is a net convergence to x implies $F\left(x_{n}\right)$ converges to $F(x)$ [8] and $F(x)$ is closed for all $x \in X$. Associated with any action α there are two multivalued functions $F: T \rightarrow X$ defined by $F(t)=t(M(\alpha))^{*}$ (where * indicates topological closure) and $G: X \rightarrow X$ defined by $G(X)=T x$. These functions are continuous [9]. Here we are interested in the converse, i. e., given F and G when is it possible to construct a unitary action α such that $\alpha(T \times\{x\})=G(x)$ for all $x \in X$. We shall give conditions on F and G which enable us to construct a disjoint unitary action of T on X. Using this construction we shall give a new proof of a theorem due to Stadtlander [6]. The methods used here are very similar to those of [2] and [8].

The reader is referred to [7] for a more complete treatment of multivalued functions.
2. Main Theorem. An $a w$-homomorphism between two actions $\alpha_{1}: T_{1} \times X_{1} \rightarrow X_{1}$ and $\alpha_{2}: T_{2} \times X_{2} \rightarrow X_{2}$ is a pair (g, f) where g is a continuous homomorphism of T_{1} onto T_{2}, f is a continuous function of X_{1} onto X_{2} and $f \alpha_{1}(t, x)=\alpha_{2}(g(t)$, $f(x)$) for all $t \in T$ and all $x \in X$. An action α is disjoint if and only if $\{T x \mid x \in M(\alpha)\}$ is pairwise disjoint. The following proposition enables us to restrict our attention to disjoint actions.

PROPOSITION 1. If $\alpha: T \times X \rightarrow X$ is a unitary action, then there is a compact, Hausdorff space Y and an action $\beta: T \times Y \rightarrow Y$ such that β is disjoint, $M(\beta)$ is closed and α is an aw-homomorphic image of β.

This proposition is very similar to Theorem 5 of [2] and a slight modification of the proof to that theorem will prove this proposition.
Let X be a compact Hausdorff space and K be a continuous multivalued function of X onto X. Then $P(K)=\{(x, y) \mid K(x) \subset K(y)\}$ is a closed quasi-order on X and let $M(K)$ be the set of maximal elements of X under $P(K)$. A disjoint unitary orbit function on X is a continuous multivalued function G of X onto X such that $x \in G(x)$ for all $x \in X$, if $x \in G(y)$ then $G(x)$ is contained in $G(y)$ and $\{G(b) \mid b \in M(G)\}$ is a pairwise disjoint collection of subsets of X. Let T be a compact semigroup. A T selector for a disjoint unitary orbit function G on X is a continuous multivalued function $F: T \rightarrow X$ such that for $b \in M(G)$, the function $f_{b}: T \rightarrow G(b)$ defined by $f_{b}(t)=F(t) \cap G(b)$ is a left-multiplicative single-valued onto function and if $x \in F(\mathrm{t})$ $\cap G(b), b \in M(G)$, then $G(b) \cap F(T t)=G(x)$. (A left-multiplicative function h on a semigroup T is a function such that $\left\{\left(t, t^{\prime}\right) \mid h(t)=h\left(t^{\prime}\right)\right\}$ is a left congruence of T.).

The following remark indicates the motivation for the above definition.
REMARK 2. Let $\alpha: T \times X \rightarrow X$ be a disjoint, unitary action. Then $G: X \rightarrow X$ defined by $G(x)=T x$ is a disjoint, unitary orbit function. If $B=B^{*} \subset M(\alpha), T B=X$ and card $G(x) \cap B=1$ for $x \in M(\alpha)$, then $F: T \rightarrow X$ defined by $F(t)=t B$ is a T-selection.

The proof is routine.
THEOREM 3. Let X be a compact Hausdorff space, G be a disjoint unitary orbit function on X, T be a compact semigroup, and let F be a T-selector for G. If $\alpha: T \times X \rightarrow X$ is defined by $\alpha(t, x)=f_{b}\left(t f_{b}^{-1}(x)\right)$ where $b \in M(G)$ and $x \in G(b)$, then α is a disjoint unitary action with $\alpha(T \times\{x\})=G(x)$.

PROOF. Since f_{b} is left multiplicative for $b \in M(G)$ and $\{G(b) \mid b \in M(G)\}$ is. pairwise disjoint, α is well-defined.

Next, we shall show that α is continuous. Let $\left\{t_{n}\right\}$ be a net in T converging to t, $\left\{x_{n}\right\}$ be a net in X converging to $x, b_{n} \in M(G)$ such that $x_{n} \in G\left(b_{n}\right)$. Let $b \in$ $M(G)$ such that $x \in G(b)$, let $t_{n}^{\prime} \in f_{b_{*}}^{-1}\left(x_{n}\right), z$ be a cluster point of $\left\{\alpha\left(t_{n}, x_{n}\right)\right\}$ and let t^{\prime} be a cluster point of $\left\{t_{n}{ }^{\prime}\right\}$. By selecting subnets we may suppose $\left\{\alpha\left(t_{n}, x_{n}\right)\right\}$ converges to z and $\left\{t_{n}{ }^{\prime}\right\}$ converges to t^{\prime}. Since $F\left(T t_{n}{ }^{\prime}\right) \cap G\left(b_{n}\right)=G\left(x_{n}\right), \quad \alpha\left(t_{n}, x_{n}\right)$
$=f_{b_{0}}\left(t_{n} f_{b_{n}}^{-1}\left(x_{n}\right)\right) \in G\left(x_{n}\right)$ and thus $z \in G(x) \subset G(b)$. Because $\alpha\left(t_{n}, x_{n}\right) \in F\left(t_{n} t_{n}{ }^{\prime}\right), \quad z \in$ $F\left(t t^{\prime}\right) \cap G(b)=f_{b}\left(t t^{\prime}\right)$. But $x_{n} \in F\left(t_{n}^{\prime}\right)$ implies $x \in F\left(t^{\prime}\right)$ so that $\alpha(t, x)=f_{b}\left(t t^{\prime}\right)=z$.

It is easily shown that $\alpha\left(t_{1}, \alpha\left(t_{2}, x\right)\right)=\alpha\left(t_{1} t_{2}, x\right)$ for $t_{1}, t_{2} \in T$ and $x \in X$ and that $\alpha(T \times\{x\})=G(x)$ for $x \in X$.

A K-space is a pair (X, K) where X is a compact metric space and K is a continuous multivalued function from X onto X such that:
(1) If $x \in K(y)$, then $K(x) \subset K(y)$
(2) If $K(x)=K(y)$, then $x=y$
(3) $x \in K(x)$ for all $x \in X$
(4) $K(x)$ is a metric arc (homeomorphic to $[0,1]$ or a point) with one endpoint x and one endpoint in $L(K)=\{x \in X \mid x$ is minimal in $P(K)\}$.
(5) Card $(K(x) \cap L(K))=1$ for all $x \in X$.

This definition is different in form to the definition given by Stadtlander [6] but the two definitions are equivalent.

A thread is a semigroup which is homeomorphic to $[0,1]$ and in which one endpoint is an identity and the other is a zero. The following corollary concerning thread actions can be found in [6]. The proof presented there is different.

COROLLARY 4. Let T be a thread and (X, K) be a K-space. Then there is a unitary action T on X with $0 X=L(K)$ where 0 is the zero of T.

PROOF. Define $p: X \rightarrow L(K)$ by $p(x)=L(K) \cap K(x)$. Then p is a retraction [9].
Carruth [3] has shown that there is a metric d for X which is convex with respect to $P(K)$, i. e., $K(x) \subset K(y) \subset K(z)$ implies $d(x, y) \leq d(x, z)$. We may also assume d is bounded by 1 and $T=[0,1]$. Thus, the function $k: M(K)^{*} \rightarrow T$ by $k(b)=d(b, p(b))$ is continuous.

Let $Y=\bigcup\left\{K(b) \times\{b\} \mid b \in M(K)^{*}\right\}$. Define $G: Y \rightarrow Y$ by $G(y, b)=K(y) \times\{b\}$. It is easily verified that G is a disjoint unitary orbit function and $M(G)=\{(b, b) \mid b \in$ $\left.M(K)^{*}\right\}$. Define $F: T \rightarrow Y$ by $F(t)=\{(x, b) \mid d(x, p(b))=t k(b)\}$. By an argument similar to the one used in Theorem 2.6 of [9], F is continuous and it is routine to verify that F is a T-selector for G. Let α be the action given by Theorem 1. Let $\pi_{1}: Y \rightarrow X$ be the first projection. It is a simple computation to verify that if $\pi_{1}(y)=\pi_{1}(x)$ then $\pi_{1} \alpha(t, x)=\pi_{1} \alpha(t, y)$ for $t \in T$, Thus, there is an action β from $T \times X$ onto X defined by $\beta(t, x)=\pi_{1} \alpha(t, y)$ where $\pi_{1}(y)=x[1,2]$.

University of Massachusetts, Amherst, Massachusetts Wichita State University, Wichita, Kansas

REFERENCES

[1] A. R. Bednarek and A.D. Wallace, Equivalences on machine state spaces, Mat Casopsis Sloven Akad. Vied. 17(1967)1-7.
[2] J. T. Borrego and E.E. DeVun, Maximal semigroup orbits (to appear).
[3] J. H. Carruth, A note on partially ordered compacta, Pac. J. Math. 24(1968)229-231
[4] K. H. Hoffmann and P.S. Mostert, Elements of compact semigroups, C. E. Merrill Books, Columbus, Ohio (1966)
[5] A.B. Paalman de Miranda, Topological semigroups, Mathematical Center, Amsterdam (1964).
[6] D. P. Stadtlander, Thread actions, Duke Math. J. 35(1968), 483-490.
[7] W.L. Strother, Continuous multivalned functions, Bol. Soc. Math São Paulo 10(1955) 87-120.
[8] E.D. Tymchatyn, Antichains and products in partially ordered spaces, (to appear).
[9] A. D. Wallace, Topological semigroups, Lecture Notes by J. M. Day, University of Florida (1964).
[10] A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 51 (1945)413-416.

