NOTES ON C-COMPACT SPACES AND FUNCTIONALLY COMPACT SPACES

By Hong Oh Kim

1. Introduction

It is well known that every continuous function on a compact space into a Hausdorff space is closed. In [1], G. Viglino showed that this property holds for a class of spaces (called C-compact spaces) which properly contains the class of

compact spaces. R.F. Dickman Jr. and A. Zame [2] characterized the class of Hausdorff spaces with this property and called such spaces functionally compact spaces. These authors asked whether the C-compactness and the functional compactness are equivalent for Hausdorff spaces. In the present paper we characterize these two kinds of spaces and get partial answers of this question. (See Corollary 3 and Remark 2) The question (3) in [1] is answered negative. (See Remark 1) An open filter base on a topological space X means a filter base consisting of

open subsets of X.

DEFINITION. A filter base on a topological space X converges to a subset A of X if and only if every neighborhood of A contains a member of the filter base.

A topological space X is C-compact [1] if and only if given a closed subset Q of X and an open cover \mathcal{O} of Q, then there exist a finite number of members of \mathcal{O} whose closures cover Q.

A topological space X is functionally compact [2] if and only if whenever \mathscr{U} is

an open filter base on X such that the intersection A of the members of \mathcal{U} is equal to the intersection of the closures of the members of \mathcal{U} , then \mathcal{U} is a neighborhood base of A, or equivalently \mathcal{U} converges to A. No separation axiom is assumed here.

For a subset A of a topological space X, A^- denotes the closure of A, A^0 denotes the interior of A, and A' denotes the complement $X \sim A$ of A.

2. Characterizations

THEOREM 1. A topological space X is C-compact if and only if every open filter base \mathcal{U} converges to $\bigcap \{ U^- | U \in \mathcal{U} \}$.

75

76 Hong Oh Kim

PROOF. Let \mathscr{U} be an open filter base on a C-compact space X and let $A = \bigcap \{U^- | U \in \mathscr{U}\}$. If N is an open neighborhood of A, then $N' \subset A' = \bigcup \{U^{-'} | U \in \mathscr{U}\}.$ By the C-compactness of X, $N' \subset \bigcup_{i=1}^{n} U_i^{-'-i}$ for some finite $U_i \in \mathscr{U}$, i=1, 2, ..., n. Thus

$$N \supset \bigcap_{i=1}^{n} U_{i}^{-'-'} \supset \bigcap_{i=1}^{n} U_{i}^{\cdot}$$

Hence \mathscr{U} converges to A.

To prove the converse, let X be a topological space in which every open filter base converges to the set of cluster points of the open filter base. Suppose that there exist a closed subset Q of X and an open cover \mathcal{O} of Q such that

$$Q \oplus O_1^- \cup \cdots \cup O_n^-$$

for any finite number of members $O_i \in \mathcal{O}, i=1, 2, \dots, n$. Let \mathscr{N} be the family of all open neighborhoods of Q and let \mathscr{U} be the family of all $N \sim (\bigcup_{i=1}^n O_i)^-$ for every $N \in \mathscr{N}$ and for every finite number of members O_i of \mathscr{O} . Then we know that \mathscr{U} is an open filter base on X. By the hypothesis \mathscr{U} converges to A, where $A = \bigcap \{U^- \mid U \in \mathscr{U}\}$. On the other hand,

$$A = \bigcap \{ (N \sim (\bigcup_{i=1}^{n} O_i)^{-})^{-} | N \in \mathcal{N}, \text{ finite } O_i \in \mathcal{O} \}$$

$$\subset \bigcap \{ N^{-} \cap (\bigcup_{i=1}^{n} O_i)^{-'-} | N \in \mathcal{N}, \text{ finite } O_i \in \mathcal{O} \}$$

$$= \bigcap \{ N^{-} | N \in \mathcal{N} \} \bigcap \{ (\bigcup_{i=1}^{n} O_i)^{-'-} | \text{finite } O_i \in \mathcal{O} \}$$

$$\subset \bigcap \{ N^{-} | N \in \mathcal{N} \} \bigcap \{ (\bigcup_{i=1}^{n} O_i)^{\prime} | \text{finite } O_i \in \mathcal{O} \}$$

$$\subset \bigcap \{ N^{-} | N \in \mathcal{N} \} \bigcap \{ (\bigcup_{i=1}^{n} O_i)^{\prime} | \text{finite } O_i \in \mathcal{O} \}$$

 $\Box \{ \{ M \mid M \subseteq \mathcal{N} \} \mid \{ Q \}$

Therefore Q' is an open neighborhood of A, and hence

 $Q' \supset N \sim (\bigcup_{i=1}^{n} O_{i})^{-}$ for some $N \in \mathscr{N}$ and some finite number of $O_{i} \in \mathscr{O}$, $i=1, 2, \dots, n$. But then $Q' \supset N \sim (\bigcup_{i=1}^{n} O_{i})^{-} \supset Q \sim (\bigcup_{i=1}^{n} O_{i})^{-} \neq \phi.$

This is a contradiction.

A closed subset C of a topological space X is said to be r-closed [2] if whenever B is closed in C and $x \equiv B$, there exist disjoint open sets in X containing x and B, respectively.

COROLLARY 2. An r-closed subset of a C-compact space is C-compact.

PROOF. It is proved similarly as Theorem 4 in [2].

Notes on C-compact Spaces and Functionally Compact Spaces 77

COROLLARY 3. For the spaces in which every closed subset A has the same neighborhood system as the intersection of all closed neighborhoods of A, the Ccompactness is equivalent to the functional compactness.

PROOF. It is clear from Theorem 1 that the C-compactness implies the functional compactness.

To prove the converse, let \mathscr{U} be an open filter base and let $B = \bigcap \{U^- | U \in \mathscr{U}\}$, Let \mathscr{N} be the family of all open neighborhoods of B and let \mathscr{V} be the family of

all $U \cup N$ for every $U \in \mathscr{U}$ and for every $N \in \mathscr{N}$. Then \mathscr{V} is an open filter base and $\bigcap \mathscr{V} = \bigcap \{V^- | V \in \mathscr{V}\} = \bigcap \{N^- | N \in \mathscr{N}\}$. Putting $B^* = \bigcap \{N^- | N \in \mathscr{N}\}$, \mathscr{V} converges to B^* by the functional compactness. Since B and B^* have the same open neighborhood base \mathscr{N}, \mathscr{V} converges to B and hence \mathscr{U} converges to B.

THEOREM 4. A topological space X is functionally compact if and only if whenever given an open cover \mathcal{O} of the complement A' of any closed subset A of X whose members' closures are disjoint from A, then for every neighborhood N of A there exist finite $O_i \in \mathcal{O}, i=1,2,...,n$ with $\bigcup_{i=1}^n O_i^- \supset N'$.

PROOF. Let X be functionally compact and \mathscr{O} be an open cover of the complement A' of a closed subset A of X such that $O^- \cap A = \phi$ for every $O \in \mathscr{O}$. Then $A \supseteq \cap \{O' | O \in \mathscr{O}\} \supseteq \cap \{O^{-'-} | O \in \mathscr{O}\} \supseteq \cap \{O^{-'} | O \in \mathscr{O}\} \supseteq A.$

Hence

$$A = \bigcap \{ O^{-'} | O \in \mathcal{O} \} = \bigcap \{ O^{-'-} | O \in \mathcal{O} \} = \bigcap \{ O' | O \in \mathcal{O} \}.$$

Case 1. $A = \phi$. \mathcal{O} is an open cover of X. Since the functional compactness implies

the generalized absolutely closedness, (A topological space is generalized absolutely closed [4] if and only if every open cover \mathcal{O} of X has a finite subfamily whose union is dense in X, or equivalently every open filter base has a cluster point.) there exist finite $O_i \in \mathcal{O}, i=1, 2, \dots, n$ such that $X = \bigcup_{i=1}^n O_i^{-i}$.

Case 2. $A \neq \phi$. Let \mathscr{U} be the family of all finite intersections of $O^{-'}$ for $O \in \mathscr{O}$, Then \mathscr{U} is an open filter base on X and $A = \bigcap \mathscr{U} = \bigcap \{U^- | U \in \mathscr{U}\}$. By the functional compactness of X, \mathscr{U} converges to A. Therefore for every neighborhood N of A, $N \supset \bigcap_{i=1}^{n} O_{i}^{-'}$ for some finite $O_{i} \in \mathscr{O}$. That is, $N' \subset \bigcup_{i=1}^{n} O_{i}^{-}$.

To prove the converse, let X be the topological space satisfying the condition of the theorem and let \mathscr{U} be an open filter base on X with $\bigcap \mathscr{U} = \bigcap \{U^- | U \in \mathscr{U}\} (=A)$. Let an open neighborhood N of A be given. For each $x \in A'$, take a $U_x \in \mathscr{U}$ and a neighborhood N_x of x such that $N_x \cap U_x = \phi$, and hence $N_x^- \cap U_x = \phi$ and $N_x^- \cap A = \phi$.

Hong Oh Kim 78

Then there exist finite x_i , $i=1, 2, \dots, n$ such that $N' \subset \bigcup_{x_i}^n N_{x_i}^-$. Thus $N \supset \bigcap_{x} N_{x}^{-\prime} \supset \bigcap_{x} U_{x}$

Consequently \mathscr{U} converges to A, and hence X is functionally compact.

A function $f: X \to Y$ is almost continuous [3] if and only if for each $x \in X$ and for each neighborhood V of f(x) there exists a neighborhood U of x with f[U] $\subset V^{-0}$, or equivalently the inverse image of every regularly open subset of Y is

open in X. $(V \subset Y$ is regularly open in Y if $V^{-0} = V$.)

A function $f: X \to Y$ is θ -continuous [5] if and only if for each $x \in X$ and for each neighborhood V of f(x) there exists a neighborhood U of x with $f[U^{-}] \subset V^{-}$.

LEMMA 5. Let f be a θ -continuous function on a generalized absolutely closed space X into a Hausdorff space Y. Then f[X] is closed in Y.

PROOF. Let $p \equiv f[X]$. For each $x \in X$ choose an open neighborhood $U_{f(x)}$ of f(x) with $p \equiv U_{f(x)}^{-}$. By the θ -continuity of f there exists an open neighborhood N_x of x such that $f[N_x^-] \subset U_{f(x)}^-$. Since X is generalized absolutely closed, $X = \bigcup_{x_1}^{n} N_{x_1}^{-}$ for some finite $x_i, i=1, 2, \dots, n$. Thus $f[X] = \bigcup_{i=1}^{n} f[N_{x_i}^{-}] \subset \bigcup_{i=1}^{n} U_{f(x_i)}^{-}$ Hence $Y \sim \bigcup_{f(x_i)} U_{f(x_i)}^-$ is an open neighborhood of p and is disjoint from f[X]. Therefore f[X] is closed.

LEMMA 6. Every almost continuous function is θ -continuous.

PROOF. Let $f: X \rightarrow Y$ be almost continuous. Let $x \in X$ and let U be an open neighborhood of f(x). Then by the almost continuity of f there exists an open neighborhood V of x such that $f[V] \subset U^{-0}$. We show that $f[V^{-}] \subset U^{-}$ and complete the proof. If $f(x_0) \in U^{-'}$ for some $x_0 \in V^{-}$, again by the almost continuity of f there exists an open neighborhood W of x_0 such that $f[W] \subset U^{-\prime - 0} = U^{-\prime}$. [6, 1. E] But $W \cap V \neq \phi$, and hence $f[V] \cap U^{-\prime} \neq \phi$, which is contrary to the fact that f[V] $\subset U^{-0} \subset U^{-}.$

Lemma 6. is the answer of a question in Remark 3.3 in [3]. As a generalization of Theorem 3 in [2], we have

THEOREM 7. For the topological space X in which every two distinct point closures have disjoint neighborhoods, the following are equivalent.

Notes on C-compact Spaces and Functionally Compact Spaces 79

(i) X is functionally compact.

(ii) Every almost continuous function on X into any Hausdorff space is closed. (iii) Every continuous function on X into any Hausdorff space is closed.

PROOF. (i) \Rightarrow (ii). Let f be an almost continuous function on a functionally compact space X into a Hausdorff space Y and let C be a closed subset of X. Suppose there exists a point y in $f[C] \xrightarrow{-}{} f[C]$. Let \mathscr{V} be the family of all open neighborhoods of y and let $\mathscr{U} = \{f^{-1}[V^{-0}] | V \in \mathscr{V}\}$. By Lemma 5 and Lemma 6

f[X] is closed in Y, and hence $y \in f[X]$ and $f^{-1}[V^{-0}] \neq \phi$. Since f is almost continuous, \mathscr{U} is an open filter base and $\cap \mathscr{U} = \bigcap \{U^- | U \in \mathscr{U}\} = f^{-1}[y]$. By the functional compactness of X, \mathscr{U} is a neighborhood base of $f^{-1}[y]$. Since $X \sim C$ is an open subset of X containing $f^{-1}[y]$, there is a $U \in \mathscr{U}$ with $U \subset X \sim C$. But then f[U] is an open neighborhood of y in f[X] such that $f[U] \cap f[C] = \phi$, which is contrary to the fact that $y \in f[C]^-$. Thus f[C] is closed in Y.

 $(ii) \Rightarrow (iii)$ is clear from the fact that every continuous function is almost continuous.

(iii) \Rightarrow (i). By the same method as in the proof of Theorem 3 in [2] we can construct a Hausdorff space Y and a continuous function on X onto Y which is not closed, if X is not functionally compact.

REMARK 1. The C-compactness is not productive even when every factor is a Hausdorff C-compact space.

Let X be the space of Example 2 in [1] and let Y = [0,1] with the usual topology. Since Y is Hausdorff compact, Y is C-compact but $X \times Y$ is not C-compact. For the projection $\pi_2: X \times Y \to Y$ is continuous but not closed because $C = \left\{ \left(\left(\frac{1}{n}, 0\right), \frac{1}{n} \right) | n = 1, 2, \cdots \right\} \text{ is closed in } X \times Y \text{ but } \pi_2[C] = \left\{ \frac{1}{n} | n = 1, 2, \cdots \right\} \text{ is not closed in } Y.$ This is the same method as in Remark in [2]. REMARK 2. Let $X = X_1 \cup X_2$, where $X_1 = \{x | 0 \neq x \leq \omega^2, x = \text{ordinal number}\}$ and $X_2 = \{\alpha_i | i = 1, 2, 3, \cdots\}, \alpha_i \neq \alpha_j \text{ for } i \neq j, X_1 \cap X_2 = \phi$. Topologize X as follows: X1 has the order topology and each $\alpha_i \in X_2$ has $\{A_{ij} | j = 1, 2, 3, \cdots\}$ as a neighborhood ba^Se, where $A_{ij} = \{\omega k + i | k > j, k = \text{natural number}\}$, $i = 1, 2, 3, \cdots$.

Then X is T_1 functionally compact which is not C-compact.

Kyungpook University Taegu, Korea

M. No.2 (1968), 63-73.

Hong Oh Kim

REFERENCES

G. Viglino, C-compact spaces, Duke Math. J., Vol. 36, No. 4 (1969), 761-764.
 R.F. Dickman, Jr., and A. Zame, Functionally compact spaces, Pacific J. Math. Vol. 31, No.2 (1969), 303-311.
 M.K. Singal and A.R. Singal, Almost continuous mappings, Yokohama Math. J., Vol.

[4] C.T. Liu, Absolutely closed spaces, Trans. A.M.S., Vol. 130, No.1 (1968), 86-104.
[5] S.V. Fomin, Dokl. Akad. Nauk SSSR, 32 (1941), 114.
[6] J.L. Kelley, General Topology, New York, Van Nostrand, 1955.

-.