MUTANTS IN SEMIGROUPS, A GENERALIZATION

By Joseph S. Cartisano

1. Introduction.

A mutant in a semigroup is defined as follows: a subset M of a semigroup S is a mutant if and only if $MM \subseteq S \setminus M$, where $MM = \{ab: a \in M \text{ and } b \in M\}$ and $S \setminus M$

is the set of all elements in S not in M. In [2] Iseki made a definition of a mutant in a semigroup S as follows: a subset M of S is an (m, n) mutant of S if and only if $M^m \subset S \setminus M^n$. Iseki also established in [2] a theorem which states that if H an L are (m, n) mutants in semigroups S and T, respectively, then $H \times L$ is an (m, n) mutant of $S \times T$. The main purpose of this paper is to generalize the concept of mutant by defining a set we choose to call a *niltant*, and proving a theorem similar to Theorem 2 in [3] which Kim has established.

2. Notations and Definitions.

Let S be a semigroup. If $H \subseteq S$, define $E(H) = \{e \in H: e^2 = ee = e\}$. For *n* a positiv : teger let $H_n = \{a_1 a_2 \dots a_n: a_i \in H, 1 \le i \le n\}$ and $S \setminus H = \{a \in S: a \notin H\}$.

DEFINITION. Let N be a subset of a semigroup S. If $N \subseteq S \setminus N$ for all positive integers i, $1 \le i \le n+1$ (n is a fixed integer), we then say N is a n-th order niltant in S.

NOTE. A 1-st order niltant is a mutant.

3. Theorems.

We will now state and prove a theorem similar to the theorem established by Iseki which was stated in our introduction. But first we will need a lemma.

LEMMA. If M and N are n-th order niltants in semigroups S and T, respectively, then $M \times N$ is a n-th order niltant in $S \times T$.

PROOF. Let $(x_i, y_i) \in M \times N$, $i=1, 2, \dots, r$, for $1 < r \le n+1$. Now suppose $(x_1, y_1)(x_2, y_2)\cdots(x_r, y_r) = (x_1x_2\cdots x_r, y_1y_2\cdots y_r) \in M \times N.$ This implies $(x_1x_2\cdots x_r) \in M$ and $(y_1y_2\cdots y_r) \in N$ which gives a contradiction. Hence our conclusion holds.

70 Joseph S. Cartisano

THEOREM 1. Let M be a m-th order niltant, N a n-th order niltant, in semigroups S and T respectively. Then $M \times N$ is a p-th order niltant in $S \times T$, where p is the max of m and n.

PROOF. If m=n, our conclusion follows from the lemma. Suppose then that m < n. Let $(x_i, y_i) \in M \times N$ for $i=1, 2, \dots, r$ where $1 < r \le n+1$. Now if $(x_1, y_1)(x_2, y_2), \dots, (x_r, y_r) \in M \times N$, then $(y_1y_2, \dots, y_r) \in N$. But $N^r \subseteq S \setminus N$, hence a contradiction. Dually we get a

contradiction for m > n. This completes our proof.

Before we state the main result of this paper, we reproduce here Theorem 2 of Kim in [3], without the proof.

THEOREM. Let S be a semigroup.

(i) S has no decomposition $S = M_1 \cup M_2$,

(ii) S has no decomposition $S=M_1 \cup M_2 \cup M_3$ into three disjoint mutants M_i , (i=1, 2, 3) of S.

We shall now state and prove the main theorem of this paper.

THEOREM 2. A semigroup S has no decomposition into the union of three disjoint n-th order niltants in S, for $n \ge 1$.

PROOF. Clearly, if $E(S) \neq \phi$, the empty set, then our conclusion follows quickly. Thus we will assume $E(S) = \phi$, which also implies S is infinite. Now the combination of our note at the end of section 2 and Kim's Theorem 2 stated above, gives

our desired result for n=1.

Consider now N_1 , N_2 , N_3 three disjoint 2-nd order niltants in S. The following symbol borrowed from Kim [3] will be used:

$$(1, 4,)$$

 $(2, 5,)$
 $(3,)$ (6)

This symbol denotes that if niltant N_1 contains elements x, x^4 , niltant N_2 contains x^2 , x^5 , and niltant N_3 contains x^3 . Then there is no niltant $N_i(i=1, 2, 3)$ containing x^6 .

We have the following combinations for n=2.

$$(1, 4,) (1, 4,) (1, 5,) (1, 6,) (1, 6, 9,)$$
$$(2, 5,) (2,) (2,) (2, 5,) (2, 7, 8,)$$

Mutants in semigroups, a generalization 7ŀ)(10))(6) (3, 5,)(6) (3, 4,)(6) (3, 4,)(7) (3, 4, 5, (3, 4, 7, 10, 13,) (1, 4, 7, (1,) (2, 3, 11, 12,) (2, 3, 10, 11,) 5, 6, 8, 9,)(14) (5, 6, 8, 9, ()(12) 10, 13,) (1, 4, (1, 11,) 4,

(2 3 11, 12,) (2, 3, 10,)

Consider n=3. (1, (1, 6,) 5,) (1, 6,) (1, 5,) (2, 5,) (2, (2, 7,) (2, 3,)) (3, 4, (3, 4, 5,)(8) (3, 4,)(6))(7) (4, 6, 7,)(8)

$$(1, 6,) (1, 7,) (1, 8,)$$

$$(2, 3,) (2, 3,) (2, 3,)$$

$$(4, 5, 7,)(8) (4, 5, 6,)(8) (4, 5, 6, 7,)(9)$$
Our conclusion for $n=3$.
Consider $n=4$.
$$(1, 6,) (1, 6,) (1, 6,)$$

$$(2, 5,) (2, 7,) (2, 3,)$$

$$(3, 4,)(7) (3, 4, 5,)(8) (4, 5, 7,)(8)$$

$$(1, 7,) (1, 8,)$$

$$(2, 3,) (2, 3,)$$

$$(4, 5, 6,)(8) (4, 5, 6, 7,)(9)$$
Our conclusion for $n=4$.

Our conclusion for n=4,

Joseph S, Cartisano

Consider n=5.

$$(1,) (1,) (1, 7,)$$

$$(2, 5,) (2,) (2, 3,)$$

$$(3, 4,)(6) (3, 4, 5,)(6) (4, 5, 6,)(8)$$

$$(1, 8,)$$

Our conclusion for
$$n=5$$
.

Consider n=6.

(1,) (1,) (1, 8,) (2, 5,) (2,) (2, 3,) (3, 4,)(6) (3, 4, 5,)(6) (4, 5, 6, 7,)(9)

Our conclusion for n=6.

Now clearly for any $n \ge 7$ we shall continue to have only three possible combinations. Suppose we had $n \ge 7$, then if $x^1 \in N_1$, $x^2 \in N_2$, x^4 must be in N_3 . Thus x^3 can be in N_2 or N_3 . If $x^3 \in N_2$, x^5 must be in N_3 . Therefore x^8 cannot be in N_i , (i=1, 2, 3). If $x^3 \in N_3$ then x^6 cannot be in $N_i(i=1, 2, 3)$. This completes our proof.

4. Conjectures.

CONJECTURE 1. No semigroup S has a decomposition into the union of a finite number of disjoint *n*-th order niltants in S, for $n \ge 1$.

CONJECTURE 2. Let S be a topological semigroup. If $a \in S$ and $a^i \neq a$ for any integer $1 < i \le n+1$, n some positive integer, then there exists an open niltant of *n*-th order N(a) in S containing a.

West Liberty State College

Mutants in semigroups, a generalization

73

REFERENCES

 [1] A.H. Clifford and G.B. Preston: The algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961.
 [2] K. Iseki: On mutants in semigroups, Proc. Japan Acad. 38, pp. 478-479. 1962.
 [3] J.B. Kim: Mutants in semgiroups, (Zech. Math. Journal, 19(94), Praha, pp. 86-90, 1969.