ON DIMENSION OF HYPERSPACE OF A METRIC CONTINUUM

By Choon Jai Rhee

1. Introduction

The space $C(X)$ of all non-vacuous subcontinua of a metric continuum X with the Hausdorff metric has been investigated to a considerable extent. It is known that: X is Peanian if and only if $C(X)$ is Peanian [6] and [7]; $C(X)$ is always arcwise connected [1]: and if X is Peanian $C(X)$ is an absolute retract [9]: It is also known [3] that $C(X)$ is locally p-connected in the sense of Lefschetz for $p>0$, and the question of dimension is resolved there except for the case where X is non-Peanian. Recently it is shown [5] that if X is a pseudoarc in the plane E^{2} which does not separate E^{2}, then $C(X)$ can be embedded in E^{3}. In this paper we will show that if X is a p-adic solenoid then the dimension of $C(X)$ is 2 and we will give some properties of $C(X)$ when X is a pseudoarc.

2. Dimension of $C(X)$.

Let S^{1} be the unit circle in the complex plane. For each $n=1,2, \cdots \cdots$ and a fixed integer $p>0$, let $X_{n}=S^{1}$ and $f_{n}(z)=z^{p}$ for $z \in S^{1}$. The p-adic solenoid is defined to be the inverse limit space of the inverse limit system $\left\{X_{n}, f_{n}\right\}$.

THEOREM. 2.1. Let X be the p-adic solenoid. Then $\operatorname{dim} C(X)=2$.
PROOF. Let D be the set of all complex numbers w such that $|w| \leq 2 \pi$. Since each subcontinuum of S^{1} is a point, an arc, or S^{1} itself, we define a function $\phi: C(X) \rightarrow D$ by

$$
\phi(A)= \begin{cases}(2 \pi-r) z, & \text { if } A \neq S^{1}, \text { where } z \text { is the mid-point of } A \\ & \text { and } r \text { is the length of } A .\end{cases}
$$

Then it is easy to see that ϕ is a homeomorphism of $C(X)$ onto the space D.
Let $f_{n}^{*}(A)=f_{n}(A)$ for $n=1,2, \cdots \cdots$. Then each $f_{n}^{*}: C\left(X_{n+1}\right) \rightarrow C\left(X_{n}\right)$ is continuous and the inverse limit space of the inverse limit system $\left\{C\left(X_{n}\right), f_{n}{ }^{*}\right\}$ is homeomorphic to $C(X)$ [4], and hence $\operatorname{dim} C(X) \leq 2$. On the other hand, since each f_{n} is a local homeomorphism, we can find arcs $A_{n} \subset X_{n}$ for which each restriction map $f_{n} \mid A_{n+1}$: $A_{n+1} \rightarrow A_{n}$ is a homeomorphism. The inverse limit space A of the inverse limit
system $\left\{A_{n}, f_{n} \mid A_{n+1}\right\}$ is an arc in X. Since $C(A)$ is a 2 -dimensional disk and $C(A) \subset C(X)$, we have $\operatorname{dim} C(X) \geq 2$.

REMARK 2.2. Since each X_{n} is a topological group and each bonding map f_{n} is a homomorphism, it can be verified that each $C\left(X_{n}\right)$ is a topological semigroup whose product is defined by $A B=\{a b \mid a \in A, b \in B\}=B A$ and each induced map f_{n}^{*} is a homomorphism. Hence the inverse limit space of the system $\left\{C\left(X_{n}\right), f_{n}^{*}\right\}$ is a 2-dimensional abelian topological semigroup.

3. The Hyperspace of a Pseadoarc.

Let X be a compact metric space. It is possible to define [8] a real-valued continuous function μ on $C(X)$ with properties:
(i) If $A \subset B$ and $A \neq B$, then $\mu(A)<\mu(B)$
(ii) $\mu(X)=1$, and for each $x \in X \mu(\{x\})=0$.

For convenience, we shall suppose throughout that μ is a certain fixed function with these properties.

The following four theorems can be found in [3].
3.1. If X is an indecomposable metric continuum and $a_{A B}$ is an arc in $C(X)$ with $\cup\left\{D \mid D \in a_{A B}\right\}=X$, then $X \in a_{A B}$.
3.2. A metric continuum X is indecomposable if and only if $C(X)-X$ is not arcwise connected.
3.3. If X is a hereditarily indecomposable metric continuum, $A, B \in C(X), A \cap B$ $\neq \phi$, and $\mu(A)=\mu(B)$ then $A=B$.
3.4. A metric continuum X is hereditarily indecomposable if and only if $C(X)$ contains a unique arc between every pair of its elements.

Let X be a pseudoarc. Then X can be represented [2] as the inverse limit space of the inverse limit system $\left\{X_{n}, f_{n}\right\}$, where each X_{n} is the closed unit interval and $f_{n}=f_{n+1}, n=1,2, \cdots \cdots$ is some suitable continuous map. Since each $C\left(X_{n}\right)$ is homeomorphic to the 2 -simplex whose vertices are (0,0), (1, 0), and $(1,1)$, we see that $\operatorname{dim} C(X) \leq 2$.

THEOREM 3.5. Let X be a pseudoarc. Then $C(X)$ is contractible.
PROOF. It suffices to show [3] that the set $X_{0}^{*}=\{\{x\} \mid x \in X\}$ is contractible in
$C(X)$. Define $\Phi: X_{0}^{*} \times[0,1] \rightarrow C(X)$ as follows: For each $(\{x\}, t) \in X_{0}{ }^{*} \times[0,1]$, $\Phi(\{x\}, t)=A_{x}$, if $x \in A_{x} \in C(X)$ and $\mu(A)=t$.
Then by 3.3 and 3.4, Φ is well defined. And $\Phi(\{x\}, 1)=X, \Phi(\{x\}, 0)=\{x\}$ for each $\{x\} \in X_{0}{ }^{*}$.
Suppose that the sequence $\left\{\left(\left\{x_{n}\right\}, t_{n}\right)\right\}$ converges to $\left(\left\{x_{0}\right\}, t_{0}\right)$. Let $A_{n}=\Phi\left(\left\{x_{n}\right\}, t_{n}\right)$. We may assume without loss of generality that $\left\{x_{n}\right\} \rightarrow\left\{x_{0}\right\}$ and $t_{n} \rightarrow t_{0}$. If $\left\{A_{n},\right\}$ and $\left\{A_{n_{j}}\right\}$ are subsequences of $\left\{A_{n}\right\}$ which converges to A_{0} and B_{0} respectively, then it is easy to see that $x_{0} \in A_{0} \cap B_{0}$ and $t_{0}=\mu\left(A_{0}\right)=\mu\left(B_{0}\right)$. Therefore, Φ is continuous.

THEOREM3.6. Let X be a pseudoarc. Then, for each neighborhood U of the element X in $C(X)$. There is a neighborhood V of X in $C(X)$ such that $V \subset U$ and the boundary of V is totally pathwise disconnected non-degenerated subcontinuum of $C(X)$.

PROOF. Let $X_{t}^{*}=\Phi\left(X_{0}{ }^{*}, t\right) 0 \leq t \leq 1$. Since $X_{0}{ }^{*}$ is homeomorphic to the continuum X, each X_{t}^{*} is a continuum. We will show that for a given U there is t_{0} such that $V=\mu^{-1}\left(t_{0}, 1\right] \subset U$. We may note here that $X_{t}^{*}=\mu^{-1}(t)$.
First, assume that there is no t for which $X_{t}^{*} \subset U$. Then for each t, there is an element $A_{t} \in X_{t}^{*}$ such that $A_{t} \equiv U$. We choose sequences $\left\{t_{n}\right\}$ and $\left\{A_{t_{n}}\right\}$ such that $\left\{t_{n}\right\}$ converges to 1 and $\left\{A_{t}\right\}$ converges to an element $A \in C(X)$. Then it is clear that $A=X$. Since $A \in U$, there is N such that $A_{t .} \in U$ for all $n \geq N$. This is a contradiction.
Now let $t_{0}<1$ such that $\mu^{-1}\left(t_{0}\right) \subset U$. We may assume here that $U=\bigcap_{i=1}^{n}\left(0_{i}, W_{i}\right)$, where O_{i} and W_{i} are open sets in X. Let $B \in X_{t}^{*}$ for $t_{0}<t \leq 1$, and $b \in B$. Then by 3.4, there is a unique are χ joining $\{b\}$ to B in $C(X)$ such that $\mu(\{b\})=0$ and $\mu(B)=t$. Then by the construction [3] of χ, the reis an element $A_{0} \in X^{*} t_{0}$ such that $\mu(A)=t_{0}, b \in A_{0}$, and $A_{0} \subset B$. Then by the definition of U and $A \in U$, we see that $B \in U$. Thus we have $\mu^{-1}\left(t_{0}, 1\right] \subset U$.
For each $0 \leq t<1, X_{t}^{*}$ is a totally pathwise disconnected non-degenerated continuum. Let $A \in X_{t}^{*}$, and $x \in X-\mathrm{A}$. Let χ be the unique arc in $C(X)$ joining $\{x\}$ to X. Then by 3.3 and 3.4, there is an element $B \in \chi$ such that $x \in B \in X_{t}{ }^{*}$ and $A \cap B$ $=\phi$. Hence X_{t}^{*} is a non-degenerated continuum. Suppose $\alpha:[0,1] \rightarrow X_{t}^{*}$ is a path
joining elements $A, B \in X_{t}^{*}$. Then there is an arc $a_{A B}$ in $\alpha[0,1] \subset X_{t}{ }^{*}$ joining A to B. Assume that $A \neq B$. Let $C \in C(X)$ be the minimal element with respect to containing both A and B. Let $a_{A C}$ and $a_{B C}$ be arcs in $C(X)$ joining A to C and B to C respectively. Then if $D \in a_{A C} \cap a_{B C}$ then $D \supset A$ and $D \supset B$ by [3] so that $D=C$. Since $a_{A B}$ is unique, $a_{A B}=a_{A C} \cup a_{B C} \subset X_{t}^{*}$. But $\mu(A)<\mu(C)$ so that $C \bar{E} X^{*}$. Therefore $A=B . X_{t}{ }^{*}$ is not pathwise connected.

Wayne State University

REFERENCES

[1] Borsuk, K. and Mazurkiewicz, S. Sur l'hyperspace d'un continu. Comptes Rendus des Seances de la Societe des Sciences et des Lettres de Varsovie 24, 1931.
[2] Henderson, G.W., The pseudo-arc as an inverse limit with one bisting map. Duke Math J. 31, 1964.
[3] Kelley, J. L., Hyperspaces of Continuum. Trans. Amer. Math. Soc. 52, 1942.
[4] Segal, J., Hyperspaces of the inverse limit space. Proc. Amer. Math. Soc. 1959.
[5] Transue, W.R., On the hyperspace of subcontinua of the pseudoarc, Proc, Amer. Math. Soc. 18, 1967.
[6] Vietories, L., Kontinua zweiter Ordung. Monatschefte fur Mathematik und Physik. 33, 1923.
[7] Wazewski, T.,Sur un continu singulier. Fund. Math. 4, 1923.
[8] Whitney, H., Regular families of curves. Annals of Math. 34, 1933.
[9] Wojdyslawski, M., Retractes absolus et hyperspaces des continus. Fund. Math. 32, 1938.

