ON DIMENSION OF HYPERSPACE OF A METRIC CONTINUUM

By Choon Jai Rhee

1. Introduction

The space C(X) of all non-vacuous subcontinua of a metric continuum X with the Hausdorff metric has been investigated to a considerable extent. It is known that: X is Peanian if and only if C(X) is Peanian [6] and [7]; C(X) is always arcwise connected [1]: and if X is Peanian C(X) is an absolute retract [9]: It is also known [3] that C(X) is locally *p*-connected in the sense of Lefschetz for p>0, and the question of dimension is resolved there except for the case where X is non-Peanian. Recently it is shown [5] that if X is a pseudoarc in the plane E^2 which does not separate E^2 , then C(X) can be embedded in E^3 . In this paper we will show that if X is a *p*-adic solenoid then the dimension of C(X) is 2 and we will give some properties of C(X) when X is a pseudoarc.

2. Dimension of C(X).

Let S^1 be the unit circle in the complex plane. For each $n=1, 2, \dots$ and a fixed integer p>0, let $X_n=S^1$ and $f_n(z)=z^p$ for $z \in S^1$. The *p*-adic solenoid is defined to be the inverse limit space of the inverse limit system $\{X_n, f_n\}$.

THEOREM. 2.1. Let X be the p-adic solenoid. Then dim C(X)=2.

PROOF. Let D be the set of all complex numbers w such that $|w| \leq 2\pi$. Since

each subcontinuum of S^1 is a point, an arc, or S^1 itself, we define a function $\phi: C(X) \rightarrow D$ by

$$\phi(A) = \begin{cases} (2\pi - r)z, & \text{if } A \neq S^1, \text{ where } z \text{ is the mid-point of } A \\ & \text{and } r \text{ is the length of } A. \\ & \text{origin} & \text{if } A = S^1. \end{cases}$$

Then it is easy to see that ϕ is a homeomorphism of C(X) onto the space D. Let $f_n^*(A) = f_n(A)$ for $n=1, 2, \dots$. Then each $f_n^* : C(X_{n+1}) \to C(X_n)$ is continuous and the inverse limit space of the inverse limit system $\{C(X_n), f_n^*\}$ is homeomorphic to C(X) [4], and hence dim $C(X) \leq 2$. On the other hand, since each f_n is a local homeomorphism, we can find arcs $A_n \subset X_n$ for which each restriction map $f_n | A_{n+1} : A_{n+1} \to A_n$ is a homeomorphism. The inverse limit space A of the inverse limit

Choon Jai Rhee

system $\{A_n, f_n | A_{n+1}\}$ is an arc in X. Since C(A) is a 2-dimensional disk and $C(A) \subset C(X)$, we have dim $C(X) \ge 2$.

REMARK 2.2. Since each X_n is a topological group and each bonding map f_n is a homomorphism, it can be verified that each $C(X_n)$ is a topological semigroup whose product is defined by $AB = \{ab \mid a \in A, b \in B\} = BA$ and each induced map f_n^* is a homomorphism. Hence the inverse limit space of the system $\{C(X_n), f_n^*\}$ is

a 2-dimensional abelian topological semigroup.

3. The Hyperspace of a Pseudoarc.

66

Let X be a compact metric space. It is possible to define [8] a real-valued continuous function μ on C(X) with properties:

(i) If $A \subset B$ and $A \neq B$, then $\mu(A) < \mu(B)$

(ii) $\mu(X)=1$, and for each $x \in X \mu(\{x\})=0$.

For convenience, we shall suppose throughout that μ is a certain fixed function with these properties.

The following four theorems can be found in [3].

3.1. If X is an indecomposable metric continuum and a_{AB} is an arc in C(X) with $\bigcup \{D \mid D \in a_{AB}\} = X$, then $X \in a_{AB}$.

3.2. A metric continuum X is indecomposable if and only if C(X) - X is not arcwise connected.

3.3. If X is a hereditarily indecomposable metric continuum, A, $B \in C(X)$, $A \cap B \neq \phi$, and $\mu(A) = \mu(B)$ then A = B.

3.4. A metric continuum X is hereditarily indecomposable if and only if C(X) contains a unique arc between every pair of its elements.

Let X be a pseudoarc. Then X can be represented [2] as the inverse limit space of the inverse limit system $\{X_n, f_n\}$, where each X_n is the closed unit interval and $f_n = f_{n+1}$, $n=1, 2, \dots$ is some suitable continuous map. Since each $C(X_n)$ is homeomorphic to the 2-simplex whose vertices are (0, 0), (1, 0), and (1, 1), we see that dim $C(X) \leq 2$.

THEOREM 3.5. Let X be a pseudoarc. Then C(X) is contractible.

PROOF. It suffices to show [3] that the set $X_0^* = \{\{x\} | x \in X\}$ is contractible in

On Dimension of Hyperspace of a Metric Continuum 67

C(X). Define $\Phi: X_0^* \times [0, 1] \to C(X)$ as follows: For each $(\{x\}, t) \in X_0^* \times [0, 1]$, $\Phi(\{x\}, t) = A_x$, if $x \in A_x \in C(X)$ and $\mu(A) = t$. Then by 3.3 and 3.4, Φ is well defined. And $\Phi(\{x\}, 1) = X$, $\Phi(\{x\}, 0) = \{x\}$

for each $\{x\} \in X_0^*$.

Suppose that the sequence $\{(\{x_n\}, t_n)\}$ converges to $(\{x_0\}, t_0)$. Let $A_n = \Phi(\{x_n\}, t_n)$. We may assume without loss of generality that $\{x_n\} \rightarrow \{x_0\}$ and $t_n \rightarrow t_0$. If $\{A_{n_i}\}$ and $\{A_{n_i}\}$ are subsequences of $\{A_n\}$ which converges to A_0 and B_0 respectively,

then it is easy to see that $x_0 \in A_0 \cap B_0$ and $t_0 = \mu(A_0) = \mu(B_0)$. Therefore, Φ is continuous.

THEOREM3.6. Let X be a pseudoarc. Then, for each neighborhood U of the element X in C(X). There is a neighborhood V of X in C(X) such that $V \subset U$ and the boundary of V is totally pathwise disconnected non-degenerated subcontinuum of C(X).

PROOF. Let $X_t^* = \Phi(X_0^*, t) \ 0 \le t \le 1$. Since X_0^* is homeomorphic to the continuum X, each X_t^* is a continuum. We will show that for a given U there is t_0 such that $V = \mu^{-1}(t_0, 1] \subset U$. We may note here that $X_t^* = \mu^{-1}(t)$.

First, assume that there is no t for which $X_t^* \subset U$. Then for each t, there is an element $A_t \in X_t^*$ such that $A_t \in U$. We choose sequences $\{t_n\}$ and $\{A_{t_n}\}$ such that $\{t_n\}$ converges to 1 and $\{A_{t_n}\}$ converges to an element $A \in C(X)$. Then it is clear that A = X. Since $A \in U$, there is N such that $A_t \in U$ for all $n \ge N$. This is

a contradiction.

Now let $t_0 < 1$ such that $\mu^{-1}(t_0) \subset U$. We may assume here that $U = \bigcap_{i=1}^n (0_i, W_i)$, where O_i and W_i are open sets in X. Let $B \in X_t^*$ for $t_0 < t \le 1$, and $b \in B$. Then by 3.4, there is a unique are χ joining $\{b\}$ to B in C(X) such that $\mu(\{b\})=0$ and $\mu(B)=t$. Then by the construction [3] of χ , the reis an element $A_0 \in X^*t_0$ such that $\mu(A)=t_0, b \in A_0$, and $A_0 \subset B$. Then by the definition of U and $A \in U$, we see that $B \in U$. Thus we have $\mu^{-1}(t_0, 1] \subset U$.

For each $0 \le t < 1, X_t^*$ is a totally pathwise disconnected non-degenerated continuum. Let $A \in X_t^*$, and $x \in X - A$. Let χ be the unique arc in C(X) joining $\{x\}$ to X. Then by 3.3 and 3.4, there is an element $B \in \chi$ such that $x \in B \in X_t^*$ and $A \cap B$ $= \phi$. Hence X_t^* is a non-degenerated continuum. Suppose $\alpha: [0, 1] \to X_t^*$ is a path

Choon Jai Rhee

68

joining elements $A, B \in X_t^*$. Then there is an arc a_{AB} in $\alpha[0, 1] \subset X_t^*$ joining A to B. Assume that $A \neq B$. Let $C \in C(X)$ be the minimal element with respect to containing both A and B. Let a_{AC} and a_{BC} be arcs in C(X) joining A to C and B to C respectively. Then if $D \in a_{AC} \cap a_{BC}$ then $D \supset A$ and $D \supset B$ by [3] so that D = C. Since a_{AB} is unique, $a_{AB} = a_{AC} \cup a_{BC} \subset X_t^*$. But $\mu(A) < \mu(C)$ so that $C \in X^*_t$. Therefore A = B. X_t^* is not pathwise connected.

Wayne State University

REFERENCES

- [1] Borsuk, K. and Mazurkiewicz, S. Sur l'hyperspace d'un continu. Comptes Rendus des Seances de la Societe des Sciences et des Lettres de Varsovie 24, 1931.
- [2] Henderson, G.W., The pseudo-arc as an inverse limit with one binding map. Duke Math J. 31, 1964.
- [3] Kelley, J.L., Hyperspaces of Continuum. Trans. Amer. Math. Soc. 52, 1942.
- [4] Segal, J., Hyperspaces of the inverse limit space. Proc. Amer. Math. Soc. 1959.
- [5] Transue, W.R., On the hyperspace of subcontinua of the pseudoarc, Proc, Amer. Math. Soc. 18, 1967.
- [6] Vietories, L., Kontinua zweiter Ordung. Monatschefte für Mathematik und Physik. 33, 1923.
- [7] Wazewski, T., Sur un continu singulier. Fund. Math. 4, 1923.
- [8] Whitney, H., Regular families of curves. Annals of Math. 34, 1933.

[9] Wojdyslawski, M., Retractes absolus et hyperspaces des continus. Fund. Math. 32, 1938.