ON DIMENSION OF HYPERSPACE OF A METRIC CONTINUUM

By Choon Jai Rhee

1. Introduction

The space C(X) of all non-vacuous subcontinua of a metric continuum X with
the Hausdorff metric has been investigated to a considerable extent. It is known
that: X is Peanian if and only if C(X) is Peanian [6] and [7]: C(X) is always
arcwise connected [1]: and if X is Peanian C(X) is an absolute retract [9]: It is
also known [3] that C(X) is locally p-connected in the sense of Lefschetz for

p>0, and the question of dimension is resolved there except for the case where X
1S non-Peanian. Recently it is shown [5] that if X is a pseudoarc in the plane

E° which does not separate £, then C(X) can be embedded in E°. In this paper
we will show that if X is a p-adic solenoid then the dimension of C(X) is 2 and
we will give some properties of C(X) when X is a pseudoarc.

2. Dimension of C(X).

Let S' be the unit circle in the complex plane. For each z=1, 2,------ and a
fixed integer p>0, let X ﬂ-——S1 and fn(z)=zp for zeS. The p-adic solenoid is

defined to be the inverse limit space of the inverse limit system {X , f,}.

THEOREM. 2.1. Let X be the p-adic solenoid. Then dim C(X)=2.

PROOF. Let D be the set of all complex numbers w such that |w|<27m. Since
each subcontinuum of S is a point, an arc, or S' itself, we define a function
¢: C(X)—D by

(2 —7)z, if A#£S', where z is the mid-point of A
o(A) =4 and 7 is the length of A.
origin if A=Sh

Then it is easy to see that ¢ is a homeomorphism of C(X) onto the space D.
Let f,*(A)=f, (A4) for n=1, 2, ------. Then each f, *: C(X,k , ;)—C(X,) is continuous

and the inverse limit space of the inverse limit system {C(X, ), f *} is homeomorphic
to C(X) [4], and hence dim C(X)<2. On the other hand, since each f, is a local
homeomorphism, we can find arcs 4 CX, for which each restriction map f,14, ,:

A, —A is a homeomorphism. The inverse limit space A of the inverse limit
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system {4, f A, +1} is an arc in X. Since C(A) is a 2-dimensional disk and
C(A)CC(X), we have dim C(X)=2.

REMARK 2.2. Since each X is a topolegical group and each bonding map f, is
a homomorphism, it can be verified that each C(X ) is a topological semigroup
whose product is defined by AB={abla = A, b = B} =BA and each induced map f*
is a homomorphism. Hence the inverse limit space of the system {C(X,), f,*} 1s

a 2-dimensional abelian topological semigroup.
3. The Hyperspaee of a Pseadoare.

Let X be a compact metric space. 1t is possible to define [8] a real-valued
continuous function g on C(X) with properties:

(1) If ACB and A#B, then u(A4) <u(B)

(i) n(X)=1, and for each x = X u({x})=0.

For convenience, we shall suppose throughout that g is a certain iixed function
with these properties.

The following four theorems can be found in [3].

3.1. If X is an indecomposable metric continuum and a4, is an arc in C(X)
with U{D|D a5} =X, then X S ayy.

3.2. A metric continuum X 1s indecomposable if and omnly if C(X)—X is not
arcwise connected.

3.3. If X 1s a hereditarily indecomposable metric continuum, 4, B C(X), ANB
Zg, and pu(A)=u(B) then A=B.

3.4. A metric continuum X is hereditarily indecomposable if and only if C(X)

contains a unique arc between every pair of its elements.

Let X be a pseudoarc. Then X can be represented [2] as the inverse limit
space of the inverse limit system {X , S}, where each X , 18 the closed unit

interval and f,=f, 1, #=1, 2, is some suitable continuous map. Since each
C(X,) is homeomorphic to the 2-simplex whose vertices are (0, 0), (1, 0), and
(1, 1), we see that dim C(X)<?2.

THEOREM 3.5. Let X be a pseudoarc. Then C(X) is coniractible.

PROOF, It suffices to show [3] that the set X 0*= {{x} |x = X} is contractible in
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C(X). Define @ : X *X [0, 1] -C(X) as [ollows: For each ({x}, {) & Ay*X 0, 1],
O({x}, D)=A,, if xE€ A, <C(X) and u(4)=1.
Then by 3.3 and 3.4, @ is well defined. And @({x}, 1)=X, @¢({x}, 0)={x}
for each {x} & X *
Suppose that the sequence {({x,},?)} converges to ({x,,%,). Let A =0({x},?,).
We may assume without loss of generality that {x }—{x,} and ¢ —7, If {4.]
and {4,} are subsequences of {A,} which converges to A, and B, respectively,

then it is easy to see that x,& AyNB, and ¢,=u(A4,) =u(By). Therefore, @ is

continuous.

THEOREM3.6. Let X be a pseudoarc. Then, for each neighborhood U of the
element X tn C(X). There is a neighboriiood V of X in C(X) such that VCU cnd

the boundary of V is totally pathwise disconnected non-degemerated subcontinuun: of
C(X).

PROOF. Let X *=0(X,*, 1) 0<t=<1. bSince X;* is homeomorphic to the continu-

um X, each X,* is a continuum. We will show that for a given U there is ¢, such
that V=p—-1(¢, 1] CU. We may note here that X, *=u—1(%).

IFirst, assume that there is no ¢ for which X,*CU. Then for each ¢, there is
an element A, = X!* such that 4,&U. We choose sequences {#,} and {Af,.} such
that {¢,} converges to 1 and {Ar_} converges to an element A<= C(X). Then it is
clear that A=X. Since A& U, there 1s N such that A4, €U for all z=N. This is
a contradiction.

Now let #,<1 such that #“l(tO)CU. We may assume here that U 2_51(01-, w.),
where O; and W, are open sets in X. Let B« X,* for £,<t<1, and bEZHB. Then by
3.4, there is a unique are ¥ joining {6} to B in C(X) such that u({d})=0 and
u(B)=¢. Then by the consfruction [3] of v, the reis an element A, &= X*tgsuch that
n(A)=ty, b= A, and A;CB. Then by the definition of U and A& U, we see that
B&U. Thus we have g~ (£, 1] CU.

ror each 0<¢ <1, X,* is a totally pathwise disconnected non-degenerated continuum.
Let A= X%, and x &< X—A. Let ) be the unique arc in C(X) joining {x} to X.
Then by 3.3 and 3.4, thereis an element By suchthatx & B & X 7~ and ANB

=¢. Hence X,* is a non-degenerated continuum. Suppose «:[0, 1]—X* is a path
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joining elements A, B& X *. Then there is an arc e,z in [0, 1]CX,* joining A

to B. Assume that A#B. Let C =C(X) be the minimal element with respect to
containing both A and B. Let a,- and dy- be arcsin C(X) joining A to C and B

to C respectively. Then if D& a,-.Nag. then DDA and DDB by [3] so that D=C.
Since a,p is unique, ¢, p=a,cUaz-CX,*. But u(A4) <u(l) so that CEX*, There-

fore A=B. X /¥ is not pathwise connected.
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