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1. Introduction

For a Riemannian manifold admitting an infinitesimal special concircular
transformation, we know the following Obata’s theorem.

THEOREM A. [1] Let M be a complete connected Riemannian manifold of
dimension #(=2). In order that M admits a nontrivial solution of the system of

differential equations
VoV, 0+k 9 Gy, =0, >0,

it is necessary and sufficient that M is isometric with a sphere S” of radius 4}5-

in the Euclidean (#+1) space.
In this paper, We shall study several properties for surfaces in a Kaehlerian

manifold by using of Theorem A.

2. Surfaces of codimension 2 in a Kaehlerian manifold

Let M be a surface of codimension 2 which is differentiably immersed in M.
We suppose that M is represented by equation

X = XA(5%)
in each coordinate neigchborhood U of M, {X"‘} being coordinates defined in U and
{x*} local coordinates defined in MNU.

On putting g_,-z-:-GMBjABZ-" we see that gj; define in M a Riemannian metric

which is called the induced metric, where Bﬂ=axﬁ/axi

The Kaehlerian manifold M being orientable, we assume that the surface M is
also orientable and that B;%, -+, Bo,_o* are chosen in such a way that they form a
frame of positive orientation. We then choose two loca fields of mutually orthogonal
unit vectors C* and D?* in such a way that C;", DZ, Bl’.{, ---J..Bgﬂ_g;l form a frame of

positive orientation in M. If ’C* and ’D* are another set of normals satisfying the

same condition, then we know
(2.1) ‘Cl=cos@ C*~sin@ D', ’'D'=sin@ C-+cosf D
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And then we find
(2.2) G BAC* =Gy, BAD*=G;, C*D* =0,
G,. C*C* =G, D'D* =1,
B*B,=0}, B*B/,=0,*~C,C"- D,D*,
where we have put Bfﬁ. =Gy, Bglgﬁ: (gﬁ)=(8'jz:)-l, Cr =Gy, C*, D, =G, D*.
‘Therefore, we can put
(2.3) Fif Bi'=f/Bf +fC* +g,D",
Ff C*=—f'Bf +fD*, F;* D*=—g'Bf —fC*,
fz' and gi being defined by f z'-—-gff J; and g?::gifgj respectively. From (2.2) and
(2.3) we get

(2. 4) fi/=B;"F;¥ B,.
.ﬁ':BizFlﬁ Cﬁ.’ ’ gz':Be'AFRE D,
f=C*F¥D,.

Denoting by H;; and K;; the second fundamental tensor of the surface M with
respect to the normals C* and D* and putting
Hl;=g""H;, K;=g"K
then the Gauss and the Weingarten equations for M are given respectively by
(2.5) V;B=H ,C*+K ;D"
VC'=~H/B*+L;D", V;D*=—-K;/B*~LC*
Differentiating covariantly the both sides of (2.4) and taking account of (2.5),
we find
(2.6) \V/ ,-f;-" =fH f-l—giK jh,
V,fi=—fKi+gLi—fi H
ngz':'Hji__finﬂz._fiLj’
Vj-f=Kﬁf“——Hﬁg*.
Transvecting again the both sides of (2.3) with F ZK and making use of (2.3).

we oObtain
(2.7 Fifi==07+f,f"+g:8’
fif=res fl'g,=—1fp
fifi:gigz:l—fz, flg,=0.
Last, we denote by R, and Rj; the components of the curvature tensors of

M and M respectively, then we find
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h__ 7= A
(2.8) R,"=H/H,—H,H'‘+K/K ~K,K"+R, JB'B}IB/B",
Vksz'“ ijk.i_I_KkiLj_K.jiLk:E_ugzlx Bkqu#Bz'ZCx ’
D A

Which are the so-called Gauss and Codazzi equations.

uiLA

First, We shall prove the following

LEMMA 2.1 The scalar function f defined by (2.1) is deiermined independently

of the choice of mutually orthogonal unit normal vectors C* and D* to the surjace
M, and consequently f is globally defined in M.

PROOF. Let ’C” and “D* be mutually orthogonal unit normal vectors to the
manifold M at a point P, then we find that, between a pair of unit normal

vectors (C*, DY) and (“C%, ’DY) chosen as above at each point of M the relatons
(2.1) hold. So we find, "f='C*F}’D

_J'{_"

which shows that f is independent of the

choice of unit normal vectors C* and D* and that F is a globally defined.
3. Totally umbilical surfaces of codimension 2 in a Kaehlerian manifold.

When, at each point of the surface M of codimension 2, the relations H,,=Hg,
K _,-3'=K g;; are always valid, the surface is called a tetally umbilical surface, and

K bEng given bY 272{-2 gﬁHﬁ; ‘2?21_2

The mean curvature vector field H* of M in M is given by
H*=HC*+ K D*

Then the following theorem is well known [4]

j'i (W
g’ K ;; respectively.

THEOREM B. Let! M be a (2n—1)-dimensional totally wumbilical surface in a
(Cn+1) —dimensional Riemannian manifold M. If the covariant derivative VJ,-H A

of the mean curvature vector field H" of M istangent to M, then M is of constant
mean curvature.

Next, We shall prove

LEMMA 3.1. Let M be a (2n—2)-dimensional totally umbilical surface with wnon-
zero mean curvature in a Kaehlerian manifold. Suppose that \,H A is tangent to
M, then the function f defined by (2.4) is non-constant.

PROOF. Suppose that the function f is constant in M. Differentiating covariantly
the last equation of (2.6), we get
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(3.1) V. f=—f(H+K3g,,
from which we have f=0. Again, transvecting V; f of (2.6) with f/ and gf res-
pectively and taking account of (2.7) and f=0, we find X=0, H=0 respectively.

These results contradict to our assumption. Thus, the function f is non-constant,

As a consequence of this lemma and theorem B, we have

LEMMA 3.2 Let M be a (2n—2)-dimensional umbilical surface with non-zero mean
curvature in a Kaehlerian manifold. Suppose that \ H * is tangent to M, then the

gradient of the scalar function f is an infinitesimal special concircular (ransfor-
mation.

Combining lemma 3.2 and theorem A, we have

THEOREM 3.3. Let M be a (Cn—2)-dimensional complete connected totally
umbilical surface with non-zero mean curvature in Kaehlerian manifold (n=2

Suppose that VJ-H A is tangent to M, then M is isomelric with a sphere of radius
1

4/}124_ %2 in the Euclidean space, where H*+K? is the mean curvature of M.

It has been proved that the Kaehlerian manifold of constant holomorphic sectional
curvature X has the curvature tensor of the form [2]

3.2) R, =k(G,G,-G,G, +F F,—F,F, —2F F,), where
k=K/4 is constant. Substltutlng (3.2) into (2.8),
(3.3) Rr:;:k—Hth —H H]h—l—Kth Kerjk_[—k(gkkgﬁ

~&u i T S ji— T Fin— 2 0 in)
and
(3.4 VH,,—V.Hy—K LA+KuL=k(ff;;—f;f—2fi 1)
f;; being defined by f ﬁ——g,_-kfjk. Suppose that M is a totally umbilical suaface of
codimension 2 with non-zero mean curvature in M and that the covariant derivative
of the mean curvature vector of M is tangent to M. Transvecting (3.4) with g’/, we

get 0=—3%f(1— fz) by virtue of the skew symmetry of fﬁ. Taking account of

lemma 3.1 and transvecting (3.3) with ¢, we obtain R ﬁ:(2ﬂ—3)(H +K 2)gﬁ.
‘Thus we have the following

THEOREM 3.4 Let M be a totally umbilical surface of codimension 2 wilk

non-zero mean curvature in a Kaehlerian manifold of constant holomorphic sectional

cucvature. If the covariant derivative of the mean curvature vector of M is tangent
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to M, then M is Eiustern space.
From this theorem, we have

COROLLARY 3.5. If the covariant derivative of the mean curvature vector of M
is tangent to M, then there is no totally umbilical surface of codimension 2 with
non-2ero mean curvature other than Einstein in a Kaehlerian manifold of constant
holomorphic sectional curvature.

Kyungpook University
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