EXPANSION OF THE H-FUNCTION INVOLVING GENERALIZED
LEGENDRE ASSOCIATED FUNCTIONS AND H-FUNCTIONS

By P. Anandani

1. Introduection.

In this paper, an integral involving H-function and a generalized Legendre
associated function has been evaluated and it has been employed to establish an
expansion of the H-function, in a series of the products of H-functions and
generalized Legendre associated functions. The generalized Legendre associated
functions reduce to associated Legendre functions on setting m=# and to Legendre
functions on taking m=#n=0. Also, a large number of special {unctions are

particular cases of the A-function. So, on specializing the parameters of these

functions in the expansion, we may get many new as well as known expansions.

In [7], Kuipers and Meulenbeld have defined generalized Legendre associated

functions P,"” (z) and Q" (2) as two linearly independent solutions of the differ-

entia: equation
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at all points of the z-plane in which a cross-cut exists along the real axis from 1

to —co and in [8], these functions have been defined for the real values of z on
the cross-cut for —1 <z<l.

The H-function has been introduced by Fox [5, p.408] and its conditions of
validity, asymptotic expansions and analytic continuations have been discussed by

Braaksma [1]. rollowing the definition given by Braaksma [1, p.239—241], it will
be represented as follows:

’ A

| {(a, a'p)}] 1 f_ElF(bj_Bjé)g}F(l—aj—i—ajs) LdE,

24151y B T 1M ~b4 BN T (a— )

j=m+1 J=n+1

where {(f,, 7,0}, stand for the set of tie parameters (f}, 71), == (f,, 7,).
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2. The integration.
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The integration to be established is
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where k, m and k—————— are non-negative integers, 0>0, Re(l—l—p—!——;-z——l-é‘bh
/18>0, (h=1, 2, =, D, 33(B)—33(a =0, 3:(ap) 2@ +32(8) —2(B)=¢

>0 and larg z| <%¢an.

PROOF. Expressing the H-function in the integrand as Mellin-Barnes type integral

(1. 2), nterchanging the order of integration, which 1s justifiable due to the
absolute convergence of the integrals involved in the process, we have
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Evaluating the inner integral with the help of the result [6,p.149(6)], 1.e.,

(2. 3) j(l—x)p(l+x)'%Pg””(x) ax
2T 0+ 1)1 (k- 0— )T R+ +1)
- F(!e m;“”«ﬂ)}“( 0- "g)r(fe 0 2;52) o

where Re(p)>—1; and applying (1.2), the definition of the H-{unction, we
get the result (2.1).

J. Expansion Formula.

Assumptions:

(1) 0 is a positive number and [, %, 7, s are integers such that 1</<s, 0<u<r.
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(i) 33(8,)—=(er)>0 when 270 and if >2(8) -3 (a;) =0,

then 0< |21 <I (™11 (8"

=1

(ifi) larg 21 <-5-¢7 where ¢=|33(a;) —33(ap) +2(8) — (B >0

(iv) m is a non-negative integer and Re (l—l-p | g | §bk/5h)>0, (h=1,2, -, D.-

and

(V) ;b +0)#B,(a;~1—1), 0B, +1)#—B,(0+2F 2 +7+1),

(v, n=0, 1, s h=1, 2, =, [321=1, 2, «=, u)..

Then
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Equation (3.2) is valid, since the expression on the left hand side is continuous:
and of bounded variation in the interval (—1, 1),

Now, multiplying both the sides of (3.2) by P7"”(x) and integrating with res-
pect to x from —1 to 1: on the right hand side changing the order of summation.
and integration in view of [2, p.176(75)], we get

(3.3 [A-0)°U-2)FPP () Hf;j[za —1)? ig Zf))}}]dx

_ = ‘l m, R W, ¥
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On the left hand side using (2.1) and on the right hand side applying orthogo-
nality property of the generalized Legendre associated functions, I.e.
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(3.4) [Prm(x) PR"(x) dx=0, kN,
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which can be easily obtained on using [6, p.149(4)] In (3,p.285(9 & 5)]: we get
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Using (3.6) in (3.2), we get the result (3.1). We have so far shown that (3.1)
is a formal identity. We now prove that (3.1) is defined and converges under the
stated hypothesis.

The necessary conditions to ensure the convergence and meaning of the H-func-
tions are covered in (i) to (iii) and (v). The remaining assumptions arise from
the consideration of the convergence of the infinite series in (3. 1).

On using [1, p.279(6.4)], i.e.
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where'ﬁ’ means the product of the factors with j=1, ----- , j=m save j=h; and
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where 2=1, 2, ---, /.
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Now, applying [9, p.32(9)], [4,p.399(2.5)] and (3. 8) to [7,p.441(12)], we get
(3.10) P (x)~0 (N~-F™).
In view of (3.8), (3.9) and (3.10), it 1s easy to see that the series on the

right hand side of (3.1) converges when m is a positive integer and

Re (1+0+ -5 +08,/8,)>0, (h=1, 2, -, D).

[ )

This completes the proof of the expansion formula.
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