INTEGRALS INVOLVING WRIGHT S GENERALIZED
HYPERGEOMERIC FUNCTION AND H-FUNCTION OF FOX

By N.C. Jain

I. Introduction.

In this paper two integrals involving Wright's hypergeometric function have
been evaluated in 2. In 3 two key integrals involving the product of Wright’'s
hypergeometric function and AH-function of Fox have been obtained by expressing
H-function as Barnes type integral, interchanging the order of integrations and
using Integrals of 2. The integrals are very interesting, as on specialising the
parameters, they yield many known and unkown results for Meijer's G-function,
MacRobert’s E-function, Wright's hypergeometric, Bessel-Maitland, Legendre,
Whittaker and other related functions.

The following formulae will be required.

We shail denote the Wright's hypergeometric function [(8), p.287].
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The A-{funciion introduced by IFox [(8),p.408] and its asymptotic expansions
and analytic continuation studied by Braaksma [(2),p.278] will be represented
and denoted as follows:
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1'(0;—d,; &) (=1, 2, -+, k) coincides with any pole of I'(l=-y;+¢c;&) (=1,2,+,1)
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0,;-+0) .
g= 200 (=1 ki 00,1,
| 7

which are poles of I'(0;—d;§), lie to the right and the points

v,—o0—1 _
5: (v, £ ) , (=1,2,-,1; 0=0,1, ),

which are the poles of I'(1—y;-+¢; &), lie to the left of the contour L.

From the equation (6.5) of Braaksma [(2),p.%79] we have
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2. In this section we have evaluated two integrals involving Wright’s hyper-

geometric function,
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where 2(a)>0, 2(8)>0, u+1>0, k2 and s are positive numbers not both zero.
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PROOF. The integral (2.1) can be established by putting x=f», expressing
Wright’s hypergeometric function in the form of series, integrating term by term

by [(5),p.18, (1)], the result follows from (1.1). Proceeding as in (2.1),
integral (2.2) can be established. It can also be obtained from (2.1) by putting
s=0.

3. In this section, two key integrals involving product of Wright’'s hypergeomet-

ric function and A -function have been obtained usine (2.1) and (2.2).
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PROOF. To prove (3.1), substituting H-function as Barne-s integral using (1. 3),
interchanging the order of integrations, the integral then becomes
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evaluating the inner integral using (2.1), expressing Wright’s hypergeomefric
function in the form of series, this becomes
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the result now fellows from (1. 3).

Proceeding as in (3.1), using (2.2) instead of (2.1), the integral (3.2) can be
chtained.

Some deductions:
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(b) Setting s=0, =0 in (3.1), and using (1.3) we have
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(c) In (3.1), taking s=d=0, replacing %,,!/,m,n, (v,.c,) and (J,.d,) by I, k,
n,m, (1-0,,d,) and (1-vy,,c,,) respectively and using (1.3) and (1.4), we get
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Several other integrals can be obtained by taking different combinations of the

arguments and uvsing (1. 4).

4, Particular cases. By using the following known properties of the H-

iunction,
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where [, #(z) is Bessel-Maitland function [(7), p.257]; the integrals (3.1) to (3.5)
vield as particular cases many known and unknown results. However we mention
here a few interesting known results.

In (2.1) and (2.2), putting a;=1 (j=1,-,p), B;=1 (j=1,-, g), expressing the
right hand side as generalised hypergeometric series using (1.1), (1.7) and (1.5),
we get [(5).p.104, (4)] and [(5),p.1C4. (5)] respectively.

In (2.1), putting =1, a;=1, (7=1,,0), 5;=1, (=1,--,¢q) replacing ¢ by

____i__ﬂ using (1,1), (1.7) and (1.2), we obtain ((4), 1n.234, (2)).

and (3,4) reduce to known results (2.4),(2.5) and (2.3) of [(1)] respectively.
Reducing the Wright's hypergeometric function to Gauss hypergeometic {unction,
after little simnplificaticn in (3.2), (3.3) and (3.4), these reduce to results (2.4),

(2.5), and (2.3) of [(6)].
[ am extremely thankful to Dr. R.K.Saxena for his help and guidance in the
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