NON-ARCHIMEDEAN UNIFORMITIES
By A. C. M. van Rooij

Non-Archimedean uniformities were introduced by A.F. Monna in connection
with normed vector spaces over non-Archimedean valued fields. Since then, they
have drawn little attention. Recently, however, interest in functional analysis
over such fields is awakening and it becomes apparent that more knowledge of
non-Archimedean uniformities is needed. The same is true for zerodimensional
topological spaces. They have lived an obscure existence, being considered as more
or less pathological objects. Stone spaces are virtually the only. kind of zero-
dimensional spaces that have been studied. (An exception must be made for
Banaschewski's paper [2]). But in functional analysis over non-Archimedean

valued fields essentially all topological spaces are zerodimensional. |

Thus it seems appropriate to delve deeper into the theory of non-Archimedean
unitormities and zerodimensicnal topologies. The main purpose of this paper i1s to
study the completion of a non-Archimedean uniform space.

1. Non-Archimedean uniformities.

We assume that the reader is familiar with the principles of the theory of
uniform spaces ([3], [7]1).

A partition oi a set X is a collection of disjoint non-empty subsets of X that
covers X. For a partition Z of X and x=X let 2 [x] be the element of 2 that
contains x. Further, for any partition & put

97 () = U2 [x] X2 4

If 27 is a partition of X and 9 is a topology in X such that every element of
9/ is .7 -open, then every element of % is .7 -closed, hence .7 -clopen (clopen=
closed and open): we call 7 a 7 -clogen partition of X. If U is a uniformity cn X,
a U-uniform partition of X 1s a partition which is also a U-uniiorm cover. A unifor-
mity U is said to be non-Archimedearn( (8)) if every U-uniform cover of X has a U-
uniform refinement that is a partition. A collection @ of partitions of X generates

U if the finite intersections of the sets * (% = ®) form a base for U. In this

way every collection of partitions of X generates a non-Archimedean uniformity.
Let U be a non-Archimedean uniformity in X, generated by a system @ of

partitions of X. We denote by .9 (U) the topology in X induced by U.
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The elements of (U@ form a subbase for .9~ (U). Every <=9 is . (U)-clopen. U
is a Hausdorff unifoermity iff for all 2,y < X, 2%y there eXists a & ® with 2/ [x]

=2 [ y].
A topology . in X is zerodimensional if the 7 -clopen sets form a base for

", Thus, the topology induced by a non-Archimedean uniformity is always zero-
dimensional.

EXAMPLE l.1. As is well known, & metric ¢ on X determines a Hausdorff
uniformity on X a base of which is formed by the sets
{Cr, D= XXX : d(r,p<n"'}, (B=1,2,=)
This uniformity is non-Archimedean if & satisfies the stromg iriangle inequality
d(x, z)<max(d(x, v),d(y, z)), (x,y,z &X)
i.e. it & is an #ltrametric.
A valuation on a field K is a function 7:X— [0, oo) such that for all x, yE &,
n(x)=0 iff x=0,
n(x+y)<n(x)+n(y),
n(xy) =n(x)n(y),
Such a valuation induces a metric 4 on KX:
d(x,y)=n(x—y), (x,y< K).
One can prove the following ([1]). If #(2)>1, then K is (isomorphic. to) a subfield
of the complexes and there exists.a 7 &(0,.1] such that. n(x)= 'x|° for all xe K, If,
on the other hand, #(2)<1, then for all x,y &= K

n(x+y)<max(#n(x),n(y))
so that the induced metric is an ultrametric.. In the latter case we call the

valuation nos-Archimedean.

EXAMPLE 1.2. Let G be a locally compact zerodimensional: group. For any
open subgroup H of G let Z gy be the partition of & by the left cosets of H.

These partitions generaie a non-Archimedean uniformity U on G. By a theorem
of Pontryagin ([6], (7.5)) every mneighborhood of the neutral element of G- contains

an open subgroup of G. It {ollows: that our U is just the ordinary left uniformity
of the group G ({3}, [7]).

EXAMPLE 1.3. Let . be a zerodimensional topology in X. The collection of
all 7" -clopen partitions generates a non-Archimedean uniformity, the co-uniformity.
It is the strongest non-Archimedean uniformity that is compatible with the given
tonology 7. (This oco-uniformity is the uniformity considered by A.F. Monna[8]).
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EXAMPLE 1.4. Let & be a zerodimensional topology in X. For any infinite
cardinal number ¥ the clopen partitions of X that consist of fewer than W&
elements generate a non-Archimedean uniformity U R It is compatible with the

topology .97. The weakest of these uniformities is U o which 1s precompact. If

N>card(X). U_. 1s the oo-uniformity. :

R
THEOREM 1.5. If dim X=0, the uniformity Ua in. X is jyst the e-umijormiiy

(See [10]). 1

PROOF. We adopt the terminology of [9] and [10]. Let dim X'=0. We have to
prove that any countable normal cover 2 of X has a refinement that is a counta-
ble clopen partition of X. By the observations made by Shirota in the beginning

of [10] there exists a countable normal cover 7~ such that 7744<2/. Then 77 = {iniV
. V=7"} is a countable open cover, and #Z *<{Z /47 49, Let. Wy, Wo, ---
the elements of #°. For each z we have clo W, CcS(W;, #"), so that we can
choose a cioren Y, with clo W, CY ,CS(W,,%# ) (remember that dim X=0).
Finally, let Z:_-—-Y,--—(YlU---UY,-_l). Then the non-empty Z; form a countable
clopen. partition of X that refines Z.

EXAMPLE 1.6. Let X be a set and let (<X, U;>);.; be a family of non-
Archimedean uniform spaces. For each 7 let f;: X—X;. Then the weakest uniformity
on X that makes every f; uniformly continuous is non-Archimedean.

Special cases. If (<X, U;>);¢; is a family of non-Archimedean uniform spaces,
the. product uniformity /7,U; on [[;X; is non-Archimedean. If <X,U> is a non-
Archimedean uniform space and if YCX, the relativization of U to Y is non-

Archimedean.

2, Compietion.
The following lemma is easy to prove.

LEMMA 2.1. Let <X, U> be a uniform space. Let A be an index set: for each
A= A let iy be a uniformly continuous mapping of <X, U) into a completie Hausdorff

unt form space <Y 3, U;>. Assume that U is the weakest uniformily on X that makes
all the i, uniformly continuous. In Y =I11;Y; we take the product uniformity anrd
the corresponding topology (which is the product of the topologies we have in lhe
Y. Define i:X—Y by |

1(x)=1:(x), =X;A& A).
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Let X=clo i(X) and let U be the uniformity induced in X by the uniformity of Y.
Then <X,U) is the Hausdorff completion of <X,U).

Without proving this lemma we shall apply it to our mnon-Archimedean
uniformities.

Let U be a non-Archimedean uniformity on a set X generated by a collection @

of partitions of X. We consider each 22 & ® as a uniform space, its uniformity
being generated by the partition consisting of all one-element subsets of . We
endow [{@=1[l 77 with the product uniformity: the induced topology 1s just the

W (O

product topology. There is a natural map 7: X—I] @ defined by
(x)o,=2% %], xEeX;% D)

Let X=clo 7(X) and let 2 be the relativized uniformity cn X. Then we find
from the above lemma:

THEOREM 2.2. <X, U is the Hausdorff completion of (X,U). In particular,
the Huusdorff completion of ¢ non-Archimedean uniform space is again nown-Arvch-

imedearn.

COROLLARY 2.3. Let X be a zerodimensional Hausdorff space and R an
infinite cardinal number. The uniformity Uy of X is complete iff X is homeom-

orpiic o a closed subset of some prodiuct !T D;, where each Dy is a discrele topolo-
£ 4

gical space with card D« N

PROOF. The “only if” is guaranteed by the preceding lemma. (Let @ be the

collection of all clopen partitions of X that have cardinality <§). Conversely,
let (D)5, be a family of discrete spaces, card D;<® for each A4, and let X be

a closed subspace of I[;D;. Ior each p= 4 let U, be the uniformity Ug in D,
(Which is aiso the co-uniformity) and let f, be the restriction to X of the
natural surjecticn I 2D;,—D,. If U is the weakest uniformity on X that makes all
the f, uniformly continuous, then U is complete. But this U is weaker than the
uniformity U!R of X, and both uniformities induce the same topology in X. Hence,

the uniformity U . of X is also complete.

COROLLARY 2.4. Let X be a zerodimensional space whose topology is Haus-
dorff. The uniformity U « of X is complete tff X ts compact. The uniformitly

0

U . of X is complete iff X is homeomorphic to a closed subspace of a power of the

1
space of all integers. 1f dim X=0, U . is complete tff X is a Q-space (4], [10]).
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The co-uniformity of X is complete 1ff X is homeomorphic to a closed subset of 2
product of discrefe spaces. (In the terminology of [5] ! iff X is C-compact,
where C 1s the class of all discrete spaces).

For a zerodimensional space X let { X be the topological space associated with
the Hausdorff completion of the uniform space <X, UR >. This { X is a compact

0
zerodimensional Hausdorff space and there exists a natural continuous map { of

X onto a dense subset of { X. If X,Y are zerodimensional spaces, every con-

tinuous f:X—Y 1is a uniformly continuous map of (X, Ua> into (&, Ua >
Therefore: : :

COROLLARY 2.5. Let X,Y be zerodimensional spaces and let [ XY be con-
tinwous. Then there exists a unique continuous { f:{ X—LY such that the following
diagram 15 commutative.

X f——> T’
| ¢

[ X—>Y

If, in addition, Y ts compact and Hausdorff, then [ Y=Y, and the diagram
X/
\‘Y

v /

(X _—f

28 commutaliye.

Apparently, {X is a zerodimensional analog of the Stone-Cech compactification
of X. We call { X the Banaschewsk: compactification of X (see [2]). (X is the
Stone space of the boolean ring of all clopen subsets of X. { X is homeomorphic
to the Stone-Cech compactification iff dimX =0.

3. Homomorphism spaces.
In this section we demonstrate a very different method of constructing the

completion of <X, U).
Let X,Y be topological spaces, F a set of continuous functions X—Y. A

function w: F—Y 1s a homomorpkism if for every positive integer # and fy, -+, f, = F,
(w(f1)y -+ @(f)E clo {(f1(2), -+, fr(x)) 1 x E X}
the latter set being considered as a subset of Y.
For instance, let % be a continuous operation ¥ XY =Y. For f, g = F define fxg:

X—Y by the formula (f*xg)(x)=f(x)*xg(x). If w:F-Y is a homomorphism and
if f, g = F are such that fxg & F, then w(f¥g)=w(f)*w(g). For the proof of this
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statement, take n=3, fi=f, fo=g, f3=f*g and observe that {(y 2, y%2) : y. 2= Y}
is a closed subset of Y.

If y=Y we use the symbol y also to indicate the constant function X—Y whose
value is 3. If Y is Hausdorff and if F contains the constants, then w(y)=y for
every homomorphism w:F—-Y. |

Fach ¢ & X aefines a homomorphism a*: E£—Y- by

g*(f)=S(e) (fEF)

a* is called the evaluation at a.

THEOREM 3.1. Let <X,U> and <X ,V) be non-Archimedearn wuniform spaces:
assume V to be Hausdqrfj. Lel F be the sel of all uniformly continugus;, Jynglions
X—Y. The following conditions on w:¥F—X are equivalent.

(1) wis a }zomamo}'pkz'sm.
(i) For every f& F, w(f)e clo f(X). If f,g.hE F and if for every x= X
eitker f(x)=g(x) or f(x)=h(x), then either w(f)=w(g) or w(f)=w(h).
(ili) w s a limit of evaluations at points of: X, t.e.
w < clo{e*.a = X}

in the product topology of Y7

PROOF. The implications (iii)=(1)=(i) are easy. (For (1)=(ii), observe that.
{(y,9,2): p,z€YIU{(y,2,9):3,2= Y} is closed. It remains to prove (ii)=-(ill).
To do this, we need a lemma.

LEMMA 3.2, Le! {X,U),<Y.,V), F be as in Theorem (3.1) and assume that
Y contains more than one element. Let w:F—Y satisfy (1) of Theorem (3.1).
Let % be the boolean algebra {U.UCX; {U, X—U} is a U-untform pariition of X},
and put " ,={US 7 :if f,g = Fand f=g on U, then o(f)=w(g)}. Then 77, is

ultrafilter in 7°, and w(f)<= cio f(U)forall f& F U=y,

PROOF. To prove that 77°,, is an ultrafilter we have to show it has the following

four properties.
() p =7,

B ILtu,ver, then UNV &7,
(r) f U= %" and U contains an element of #°,,, then U %7,
W) HUE#, theneither U# or X-UE 7,

Now (a) is easy (consider the constant functions) and (7) is trivial. As to (5),
take f,g= F, f=g on UNV. Deline % by
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h=Ff on U,
=g on X—U.
Then k& F and w(f) =w(k)=w(g). Hence, UV & 7 ,; we have proved (7). .

Finally, takeUe #", UE 7 . Thereexist f1,fo & F such that fi=f, en U but
w(f)#w(fy). Take g1, g2 = F, gy=go on X~U. Define h< F by
k=f1=f, on U,
=g1=gs on X—U.
Either w(®)#w(f1) or w(h)#Zw(fo): we miay assume w(k)#w(f). Fori=1,2, we
have for every x & X either r(x)=f1(x) or h(x)=g;(x): It follows thdt either
w)=w(f1) or ow@=w(g;). The first possibility being exeluded wWé obtain
w(gy) =w(h)=e(gy). This proves (0): so %", is an ultrafilter.
Takef& F, U ¥ o, We know U#g. Take ¢ SU. Define g & F by
g=f onlU, |
= (@) on X-=U.

Then w(f)=w(g) € clo g(X)=clo f(U).
Now we can prove the implication (ii)=(iii) of Theorem (3.1). Let w satisfy

(ii). Take fi, -, f,F andfor eachilet V; be a neighborhood of w(f). We
have to prove
NS V)4
There exists a finite V-uniform partition. V' of ¥ such that 7 [w(f;)] &V, for eacn
. For each ¢, f;-_l(%)= {(/;,~Y(V):V =27} is a finite U-uniform partition of X: let
¢ be a finite U-uniform partition of X that is a refinement of each: £;,~Y¥). From
the lemma (obviously we may assume Y to contain more than only one element)
it follows easily that 2/ contains a U'e=%",. For each ¢, w(f)E clo f;(U), so f,(U)
N7 [w(f,)] #¢. But by the definition of 77, f;(U) is contained in an element of 7.
Therefore U f;~}(V;). The observation Us¢ completes the proof.
As a corollary we have the following theorem.

THEOREM 3.3. Let X,Y be zerodimensional Hausdorff spaces; assume that Y
contains more than one element. Let F be the se: of all continwous maps X—Y.

The following conditions on X and Y are equivalent.
(1) Every homomorphism F—Y is an evaluation at a point of X.
(11) X s homeomorphic to a closed subspace of some power of Y. (See [5]).

PROOF. We endow X and Y with their co-uniformities (Ex. 1.3). ThHen F is
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just the space of all uniformly continuous maps X—Y. The map a¢(—a* is easily

seen to be a homeomophism of X into ¥Y¥. The implication (@()=(ii) follows
directly from 1. ].

To prove (ii)=(i), let N be an index set and let X be a closed subspace of Y.
For each #« .V let 7 be the map «[—x() (x=X); thenz & F. As XYV is closed,
{(x,x%); x= X} is a closed subset of YVx¥¥. There is a map @:Y FLYyNYF with
DO(w)] (W) =w(@), (n=N)

O] (f)=w(f), (fEF).
As this @ is continuous, {x*: z & X }=(D_1({(x, x¥): x= X}) is a closed subset of

V¥, It follows from 3.1 that every homomorphism F—Y is an z*.
Closely related to this corollary is the main theorem of this section.

THEOREM 3.4, Let <X,U>,{Y,V) be non-Archimedean uniform spaces: assume
(Y,V) io be Hausdorff and complete. Let F be the set of all uniformly continuous
functions X—Y and assume that U s lhe weakest uniformity on X that makes every
element of F uniformly continuous. Then {X,U) is compleie iff every homomorphism

F-Y is an elaluation.
Let X* be the set of all homomorphisms F—Y, provided with the uniformity U?*

inherited from the product uniformity of Y. Tken <(X*, U*) is the Hausdorff
completion of <X, U).

PROOF. For the second assertion of the theorem, anply 2.1, taking A=F,
Y=Y, V=V, i;=f (fE= F). The {irst part follows from the second.

The following i1s a useful generalization of the -above theorems. We leave the

proof to the reader.

THEOREM 3.5. Let (X, U>, ,V)> be non-Archimedear wuniform spaces. Lel %
be a covering of Y by closed seis such thai the union of any two elements of # is

contained in an element of %. Lei F g be the set of all those uniformly continuous
mabs X—Y whose ranges are contained in elements of %. The conclusions of 3.1
and 3.4 remain valid if we replace F by F 5.

One can prove a similar variant of 3.3. Instead of “X is homeomorphic to a

closed subspace of some power of Y” one now obtains “X is homeomorphic to a
closed subspace of a product of elements of &, i.e. “X & K% in the notation of

[5].
COROLLARY 3.6. Let X,Y be zerodimensional Hausdorff spaces: assume that
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Y contains more than one element. Lel F be the collection of all continuous wmaps
X—Y whose ranges nhave compact closure. Then the space of all homomorpkisms
F—=Y (under the product topology) is the Banaschewsk: compactification of X.

By our definition a homomorphism F—Y has to commute with every continuous
operation in Y. From the following examples we shall see that this condition may

be relaxed considerably.

THEOREM 3.7. Let X be a topological space. Let K be either a zerodimensional
field or the (discreie) space Z of all integers or the (discreie) space N of all
positive integers. Let F be the set of all continuous maps X—K. Then a jfunction

w:F—-K is a homomorphism iff w(fg)=w(flw(g), o(f+g)=w(f)+w(g), wla)
=q for all f,g = F and a < K.

PROOF. We only have to prove the “if”. Assume w(fg)=w(fw(g), w(f+

S =w(+w(g), wl@=a for all f,g,a: we prove that w satisfies condition
(i) of (3.1). Let f,g,heF be so that for all x&= X either f(x)=g() or jf(x)

=h(x). Define j: X—X by
j=hon x=X: f(x)=gx)},
=g on {x=X: f(x)=h(x)}.
Then j=F, ft+j=g+h, fi=gh. Hence, w(f)+w(H=w(@)+wl) and w(fwl(j)

=w(g)w(k). Therefore, w(f)=w(g) or w(f)=w(h).
Now take f& F and assume w(f) & clo f(X). Observe that w(ag)=w(e)w(g)

=aw(g) for all g F and e < K. In case K is a field, choose g= [f—w(f)] %

Then g = F a_nd fe=w(f)lg+1, hence w(flw(g)=w(fw(g)+1: contradiction. If
K=N, put g=[f—w(f)1% Then g F and g=FF~—2w(f)f+w(F)% Thus, w(g)
=w(f)2—2cu(f)2+cu(f)2=O§K: contradiction. Finally, if K=Z, put g=|[f
—w(f)] 2_1. Then g&eF, w(g)=-—1, and g=0.- As is well known irom elementary
number theory, every non-negative integer is a sum of four squares of integers.

It follows that there exist g, g0, £3, g4 = F such that g=g*++++g4% Then -1
=w(g)= w(g1)2-1- +a)(g4)2: contradiction.

NOTE. In case KC(—o0,00) or K is a field with a non-Archimedean valuation
the same reasoning applies if we let /' be the collection of all dounded continucus

functions X—X.

THEOREM 3.8. Let X be a topological space, C a totally ordered set that is
gerodimensional in tts order topology, and I the set of all coniinuous maps (or all
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bounded cowntesmuous maps) "X--C. Thenw A —C is-arhomomorphism £ff-{t ts -atbattice
homomorphssmn amwd w(e)=a for all -a < C.

PROOF. Again we only prove the “if”. Let w:F—C be a lattice homomorphism
such- that wla)r=d(e=0). The proof of-the ‘factithat -w«-satisfies rthe second -half
-of -conditien (i) jin: (3. 1) iis.quite -analpgous tosthefirst-part-of+the proof -of rthe
preceding theorem; so we are done if w(f) & clo f(X) for allif=F. Assume w(f I
clo f(X) for certain fE.F. There exist 4.6 =C _such that a<w(f)<b while  for
every x& & either f(x)<a or f(x)=b. For . every x <X -either f(x)=f(x)Na=
(fAa)(x) or S(x)x=CVB(x). Hence, . either .q(f)=w(fAe)=w(f)Na=a or
w(f)=w(f V) =a(f)\ba=h: contradiction.
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