HOMOTOPY FUNCTORS DETERMINED BY SET-VALUED MAPS

By Choon Jai Rhee

1. Introduction.

It is the purpose of this paper to investigate homotopy theories which can be
applied to the study of set-valued maps. Given a family X(a) of subsets of a space
X there is a homotopy functor. This functor is shown to be equivalent to the
usual homotopy functor in certain cases. It is a consequence of the uniqueness
theorem of the usual homotopy theory that theories defined are uniquely defined.

2. The Category M.

Let (X, A;:X(«)) be defined if X is a compact Hausdorff space, X(«) a collection
of non-empty closed subsets of X such that each single point of X is also a member
of X(«x), and A=X (). For each pair of such triplets (X, A;X(«)) and (Y, B; Y
(B8)), amap F: (X, A; X(a))—(, B; Y(B)) is defined; if (1) F: XY is an
upper semicontinuous function such that for each u=X(a), F(u)=U {F(x)|x=u}
&Y (B), (2) foreach x=A, F(x)=B, (3) F(x)(NB#¢ implies F(x) DB for x=X. If
F: (X, A; X(a)— (Y, B; Y(B)) and G: (Y, B; Y(B)—(Z, C; Z(#)) are maps,
then the composition GoF is defined by GoF(x)=U{G(») |y=F(x)} for each x=X.
The identity map i: (X, A; X(a)) —» (X, A; X(a)) is defined by 7(x)=x if
x=X—-A4, and i(x)=A if x=A.

THEOREM 2.1. The collection of triplets (X, A; X(«x)) and maps form a cate-
gory, call it M.

We introduce a notion of homotopy in M. Let I denote the closed unit interval.
Two maps F,, F,: (X, 4; X(a))—(Y, B; Y(B)) are said to be homotopic in M

if there is an upper semicontinuous function H: XXI—Y such that (1) for each
x<=X, H(x, 0)=F,(x) and H(x, 1)=f,(x), (2) the restriction H|XX¢: (X, 4; X

(a))—(Y, B; Y(B)) is a map in M for each f=I. This homotopy relation is an
equivaletice relation.
3. Homotopy Funectors.

Let 7" be the product of # unit intervals. Every point x & I" is represented by

x= (2, oo x), x.&1, i=1, e .n, and the boundary of I is denoted by d1I".
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For each object (X, A; X()) in M, let I'*(X, A; X(a)) be the collection of

upper semicontinuous functions f: I"—X such that for each x &= I'", fx)=X (), and

for each x € dI", f(x)=A4, and if f(x)NA#¢ then f(x)DA. Two members f, and
f, of I "(X, A; X(@)) are said to be homotopic in I'™(X, A; X(«)) if there is
an upper semicontinuous function %:I1"XI—X such that for each x = I", h(x, 0)
=fo(x) and k(x, 1)=f;(x) and the restriction k|I"X#:I"->X is a member of
I'(X, A; X(a)) for each 0<¢<1. This homotopy relation is also an equivalence
relation in the set (X, A; X(«)) and partitions the set into equivalence classes.

We denote the set of equivalence classes by M7, (X, A; X(«)) by [f]. For each

pair of elements f, gl (X, A; X(«)) define k=f+g by

,, 1
J(2xy, -, %), ogxlg-§

@25 —1, -, %), H<z<I

k(x].' voo, xn) — {

and define [f] + [g] to be [f+g].

THEOREM 3.1. (1) The operatiorn + on the set M nn(X . A; X(o)) is independent
of the choice of representative of elements of Mn (X, A; X(«)), (2) jor n > 0
Mn (X, A; X(a)) is a group: the identity of Mrn (X, A; X(a)) is the class of

constant maps; the inverse of [f] is represenied by the element f_l(xl,

The proof is similar to that of theorems on ordinary homotopy groups [2].

We call an upper semicontinuous function f: I—X an M-pathin X if f(x) =X
(o) for each x € I. Then M n,(X, A; X(«)) is the set of M-path components of

X with respect to X(a). Let F: (X, A; X(a))—({, B; Y(B)) be a map in M.
Then F induces a function M n (F) of Mn (X, A; X(a)) into Mz (Y, B; Y

(8)) which is defined by M n (F) [f] = [Fof] for each element [f] E M7 (X, A;
X(c)). Furthermore, it is seen that M 7 (F) sends the zero elements of M 7, (X,

A; X(e)) to that of M (Y, B; Y(8)).
THEOREM. 3.2. For eachn >0, M m, is a covariant funcior of the category M

into the category G of groups.
PROOF. Suppose F: (X, A; X(a))— (&, B; Y(B8)) is a map in M,
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Since Fo(f+g)=Fof+Fog for each pair f, g=l"(X, A X(), M n (F)(f+g]l=
Mz (F)fl+Mn (F)lgl. If H,: (X, A; X(a))—(Y, B; Y(B)) is a homotopy in M,
0<#<1, then H,of is a homotopy in I'*(¥Y, B; Y(8)). Thus M n (Hy)=Mmnr (H.

If F and G are maps in M such that FoG is defined, then clearly M 7 (FoG)=
Mn (F)oMrmn, (G). Let i: (X, A; X(a))—(X, A; X(a)) be the identity map. For
each f&I"(X, 4; X{a)), we define a homotopy R, in I’ "(X, A; X(a)) by taking
h(x)=f(x) if xeI" and #:#1, and f{x)=iof(x), x& I”. Thus the identity map
induces the identity map of M T, (X, 4; X(a).

REMARK (1) If each member of X (&) is a single point set in X, then M,
(X, A; X(a)) is the ordinary homotopy group 7 (X, A) because every single-

valued upper semicontinuous function is a continuous function. (2) If (X, A;

X () and (X, A; X(B)) are objects in M such that the set X (&) is contained in
X(f), then there is a natural homomorphism from Mz, (X, A; X(@) to Mr,

(X, A; X(B)), since every element of I""(X, A; X()) is an element of 7"(X,
A; X(B)). (3) Since the set (X, X: X(a)) contains a single element, M (X,
X; X(a))=0 for each . | '

4, Uniqueness of the homotopy functors Mr,

We give the compact-open topology to the set I™(X, A; X(«)). If K is a com-
pact subset of I” and U an open set in X, define M [K, Ul={fel"'"(X, A4; X (&)
| f(K)CU}. The set of all M[K, U] such that K is compact in " and U is
an open set in X will be used as subbasic for the topology for I (X, A4; X(a)).
Let X ézf' 1(X,. A; X()) and A” be the constant member of X ; defined by A’ (x)
=A for each xelI”, let F "(Xé,, A’) be the set of all single-valued continuous
functions f: (I", 01 ")—r(Xé, A. Since I° consists of a single element, we
have X> =F9 (X’ , A).

THEOREM 4.1. Let F: (X, 4; X()—, B; Y(B)) be a map in M. Then F
| induces a continuous function F: (X', A)—X” 5 B which is defined by F(s)

=Ios for each s = X’,.

PROOF. Lets & X’ and M [K, U] be a subbasis open set such that Fos=e M [K,U].
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Since s(K) is compact in X and ‘F: X—Y is upper -semicontinuous, there isi&n
open set V containing s(K) such that F(x)CU for-each x.= V. Then M[K, -V]
is a subbasic open set in X’ such that s M[K, V] and Feos’ & M[K, U] for

each s = M[K, V.
“The map F: (X', A’ g B’) 'is continuous, and hence induces a homo-
morphism "'nn'(':ﬁ‘ ) of the ordiniary homotopy group TL';ICX’a, A" 'into w, (Y 5,'13* ).
The .proof of the following theorem 1s similar to that of theorem in -oridinary
homotopy theory (2].

THEOREM 4.2. For each n=1, the spaces I'*(X, A; X(a)) and F"~ ' (X', A)

are homeomorphic and the group Mn (X, A: X)) and ©, (X', A) are

isomorphic.

We 16t'0: I''(X, A;X (a)):rF”“'l’éXf&, “A”) tbe -the ifadtural homeomdérphism
provided 'by Theorem ‘42°and ‘4, : M7 (X, A: X@)=n, (X", A the isomo--
phism induced by 0,.

THEOREM 4.3. Let F: (X, A; X(@)—{, B; Y(B)) be a map in M. Then the
Jollowing diagram commutes for each n=1,

M, (F) -
M (X, A; -X(a))———>Ma, Y, -B; Y(8))
2, |
Ty ()

T, X, W) Tspm, 8V, B

'PROOF. Let [f] & M@, (X, A; X(a)) be represented by f. Then F 6,(f)
-=‘6n (Fof) and if -#,:is a-homotopy-in I, (X, A4: X{a)), then so :s 0,0k, -in
Jran—1 (X{a, A).

THEOREM 4.4. Let {M7n’, R’ﬂ}n=0 be a double sequence “$uch’that (1) M’ s
a covariant functor from M to the category G of groups, n>0 and M’ sends each
obsect (X, A; X)) of M to the set of M-path components of X with respect to
X(), and (2) for eack object (X, A; X)) in M "2"'”: Mn"n(X, A; X(a@)—
m,_ (X, A) is an isomorphism n >0 such that if F: (X, A; X(@)-(, B:Y
(B)) ids-ammispin M ‘then ', - (F) A Mwx (F). THenithete is.a Sequenie ‘), _,
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such that (1) for each object (X, A; X(a)) in M, =hy: “MuyX, A X(@))->Mm,
(X, A; X)) isidentity -and h,: M (X, A Xa)) =M (X, A X(a)) isa
one-lo-one and: onto’ function such that ‘A ‘h =A ~evd (2) if F: (X, -4: . X(@))—
Y, B:'Y(B):is-a map-in ‘M, : thenih, sMrr (Fy=Mwm '(F) k..

PROOF. (1) Since M 7,(X, A; X(a)) and M7y (X, .A4; X(a)) are sets, each
consisting-of the set of M-path component with respect to X(«), they are the
same sets. If #>0, we let B = (ZH’);IZH. (2) Since' A oM (F)=7r__,(F)-2_ and
.Z.ﬂ".M r, (I )=@#_11(F )'2;’ the conclusion is. immediate.

5. “The ‘Space ‘S™¢a).

Let S”(a) be the set of cellular subsets of ‘thesz<dimensional unit:sphere*S” and
pe='S”. ‘In 3], ‘it is shown that 'M‘EHGS”, p. S%€ar)) isisomorphic to tke ‘ordinary
m-dimensional homotopy ~group "7, (S”, :$) of S,

‘Now we give a-topology “to the set 'S”€e):If U and V -are open-getsiin™S”, define
N, Vy={A=S"(a) | 4CU -and AT1V#¢}. The set-of all ‘N {U, V) ssuch-thatU

and’V are open sets ‘in S” will ‘be used as-a subbasis‘for-the*topology for 5" (x).

THEOREM 5.1. .For each m >0, the space S"(a) has the same m~dimensional

ordinary homotopy group as .S".

In the:proof of :this-theorem, we will use the:following :two zesults in E1}.

LEMMA 1. For each F =T (S", p; S"()), there is an element f = F™(S", p) and
a homotopy Hin T'ES", “p; S™)) such that for-each x=I", H(x, 0)="F ) and
H(x, '1)=f).

LEMMA 2. If f,, f,F(S", p) and H is a homotopy in I'"(S", p; S™(a))
relating f,to f,, ‘then there is a homotopy in F"(S", p) relating Jo to fi.

PROOF OF THEOREM 5.1. We first;prove :that the space S”(«r) is path-wise con-
nected. Suppase -4 .and B.are.elements of .S"(«). Since.A.is -cellular.in S” there
is a point ¢ =S"—A. Let f::I—S"(a) be defined by (L) = {(C=taqg+ (T—~t) )/
—teg+(1—2%).3l |y=A}.Then ()= S"ta)foreachir=T Now let'tj& I'and {2, =1
be a sequence of points of 7 which converges to tySuppose f(t) &N, V).
Then f({,)CU and there .is a point o E-A such that (=f;+g+A—={Dy)/
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— tog+ (A —1t0)yy | EV.Then there is a positive integer 7, such that f(¢, )CU and
(=tneg+-(A=Dy)/ | —tp,g+Q—t )y | €V for each #=n. Thus f is continuous

at ty= I. Similarly, for the cellular set B, we find a point p=S —B and
a continuous function g: I-»S"(«) joining B to p. Let k: I—S” be a continuous.
function joining ¢ to p. Piecing f, g, and %2 property together, we find a

continuous function /:I—S"” (a) which joins 4 to B.
Since S™(a) is piecewise connected, it is sufficient to show that n, (S" (), P)

and :rrm(S”, ) are isomorphic where p is just a point of S". Let us note the
followings: F(S", p)CF"(S"(a), p)I'™(S", p; S"(«)), and every homotopy in
F™(S", p) is a homotopy in F"(+" «), p) and every homotopy in F m(S”(a), )
is a homotopy in I7(S", p; S"(x)).

Let a: F*(S", p)—F"(S"(a), p) be the inclusion map. Then « induces a
homomorphism o*: rrm(S”, D) —}ﬂm(S"(a{), ?), where a* is defined by a*[f] = [« (f)]
for [f}] & F*(S", p) and [«x(f)] 7,5 (), p). Suppose the element [F]&
nm(Sﬂ(a'), $) is represented by F. Then F is also an element of I7(S", p; S*(a)).
Let f = F"(S", p) be an element which is given by Lemma 1 for F. Define

/11

H(x, O)={G-f(x) + A=)/ t-f(x)+ A-D-yll/y € F(x)} for x 1" and
0<#<1. It is seen that H is a homotopy in F™"(S"(«), p). Thus a* is onto.
If a*[fl=a*[g], for [fl, [g] Ezrm(S”, p), then a(f) and a(g) are homotopic in
F"(S"(a), p). Applying Lemma 2 «a(f) and a(g) are also homotopic in

F"(S" p). Therefore a* is one-to-one.

It should be remarked that Professor W.L. Strother has shown in [4] that 7T
(C, »)=0, where C is the set of all continua of S” with the topology for C

defined as above.
Wayne State University
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