HOMOTOPY FUNCTORS DETERMINED BY SET-VALUED MAPS

By Choon Jai Rhee

1. Introduction.

It is the purpose of this paper to investigate homotopy theories which can be applied to the study of set-valued maps. Given a family $X(\alpha)$ of subsets of a space X there is a homotopy functor. This functor is shown to be equivalent to the usual homotopy functor in certain cases. It is a consequence of the uniqueness theorem of the usual homotopy theory that theories defined are uniquely defined.

2. The Category M.

Let $(X, A; X(\alpha))$ be defined if X is a compact Hausdorff space, $X(\alpha)$ a collection of non-empty closed subsets of X such that each single point of X is also a member of $X(\alpha)$, and $A \in X(\alpha)$. For each pair of such triplets $(X, A; X(\alpha))$ and (Y, B; Y) (β) , a map $F: (X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ is defined; if (1) $F: X \rightarrow Y$ is an upper semicontinuous function such that for each $u \in X(\alpha)$, $F(u) = \bigcup \{F(x) | x \in u\}$ $\in Y(\beta)$, (2) for each $x \in A$, F(x) = B, (3) $F(x) \cap B \neq \phi$ implies $F(x) \supset B$ for $x \in X$. If F: $(X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ and G: $(Y, B; Y(\beta)) \rightarrow (Z, C; Z(r))$ are maps, then the composition $G \circ F$ is defined by $G \circ F(x) = \bigcup \{G(y) | y \in F(x)\}$ for each $x \in X$. The identity map $i: (X, A; X(\alpha)) \rightarrow (X, A; X(\alpha))$ is defined by i(x) = x if $x \in X - A$, and i(x) = A if $x \in A$.

THEOREM 2.1. The collection of triplets $(X, A; X(\alpha))$ and maps form a category, call it M.

We introduce a notion of homotopy in M. Let I denote the closed unit interval. Two maps F_0 , F_1 : $(X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ are said to be homotopic in M if there is an upper semicontinuous function $H: X \times I \rightarrow Y$ such that (1) for each $x \in X$, $H(x, 0) = F_0(x)$ and $H(x, 1) = f_1(x)$, (2) the restriction $H|X \times t$: (X, A; X) $(\alpha) \rightarrow (Y, B; Y(\beta))$ is a map in M for each $t \in I$. This homotopy relation is an equivalence relation.

3. Homotopy Functors.

Let I^n be the product of *n* unit intervals. Every point $x \in I^n$ is represented by $x = (x_1, \dots, x_n), x_i \in I, i = 1, \dots, n$, and the boundary of I^n is denoted by ∂I^n .

16 Choon Jai Rhee

For each object $(X, A; X(\alpha))$ in M, let $\Gamma^n(X, A; X(\alpha))$ be the collection of upper semicontinuous functions $f: I^n \to X$ such that for each $x \in I^n, f(x) \in X(\alpha)$, and for each $x \in \partial I^n$, f(x) = A, and if $f(x) \cap A \neq \phi$ then $f(x) \supset A$. Two members f_0 and f_1 of $\Gamma^n(X, A; X(\alpha))$ are said to be homotopic in $\Gamma^n(X, A; X(\alpha))$ if there is an upper semicontinuous function $h: I^n \times I \to X$ such that for each $x \in I^n$, h(x, 0) $= f_0(x)$ and $h(x, 1) = f_1(x)$ and the restriction $h \mid I^n \times t: I^n \to X$ is a member of

 $\Gamma^{n}(X, A; X(\alpha))$ for each $0 \le t \le 1$. This homotopy relation is also an equivalence relation in the set $\Gamma^{n}(X, A; X(\alpha))$ and partitions the set into equivalence classes. We denote the set of equivalence classes by $M\pi_{n}(X, A; X(\alpha))$ by [f]. For each pair of elements $f, g \in \Gamma^{n}(X, A; X(\alpha))$ define h=f+g by

$$h(x_1, \dots, x_n) = \begin{cases} f(2x_1, \dots, x_n), & 0 \le x_1 \le \frac{1}{2} \\ g(2x_1 - 1, \dots, x_n), & \frac{1}{2} \le x_1 \le 1 \end{cases}$$

and define [f] + [g] to be [f+g].

THEOREM 3.1. (1) The operation + on the set $M \pi_n(X, A; X(\alpha))$ is independent of the choice of representative of elements of $M \pi_n(X, A; X(\alpha))$, (2) for n > 0 $M \pi_n(X, A; X(\alpha))$ is a group: the identity of $M \pi_n(X, A; X(\alpha))$ is the class of constant maps; the inverse of [f] is represented by the element $f^{-1}(x_1, \dots, x_n)$ $= f(1 - x_1, \dots, x_n)$ for $(x_1, \dots, x_n) \in I^n$.

The proof is similar to that of theorems on ordinary homotopy groups [2].

We call an upper semicontinuous function $f: I \to X$ an *M*-path in *X* if $f(x) \in X$ (α) for each $x \in I$. Then $M \pi_0(X, A; X(\alpha))$ is the set of *M*-path components of *X* with respect to $X(\alpha)$. Let $F: (X, A; X(\alpha)) \to (Y, B; Y(\beta))$ be a map in *M*. Then *F* induces a function $M \pi_n(F)$ of $M \pi_n(X, A; X(\alpha))$ into $M \pi_n(Y, B; Y(\beta))$ which is defined by $M \pi_n(F)[f] = [F \circ f]$ for each element $[f] \in M \pi_n(X, A; X(\alpha))$. Furthermore, it is seen that $M \pi_n(F)$ sends the zero elements of $M \pi_n(X, A; X(\alpha))$ to that of $M \pi_n(Y, B; Y(\beta))$.

THEOREM. 3.2. For each n > 0, $M \pi_n$ is a covariant functor of the category M into the category G of groups.

PROOF. Suppose $F:(X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ is a map in M.

Homotopy Functors Determined by Set-valued Maps 17

Since $F \circ (f+g) = F \circ f + F \circ g$ for each pair $f, g \in \Gamma^n(X, A; X(\alpha)), M \pi_n(F)[f+g] = M \pi_n(F)[f] + M \pi_n(F)[g]$. If $H_t: (X, A; X(\alpha)) \to (Y, B; Y(\beta))$ is a homotopy in M, $0 \le t \le 1$, then $H_t \circ f$ is a homotopy in $\Gamma^n(Y, B; Y(\beta))$. Thus $M \pi_n(H_0) = M \pi_n(H_1)$. If F and G are maps in M such that $F \circ G$ is defined, then clearly $M \pi_n(F \circ G) = M \pi_n(F) \circ M \pi_n(G)$. Let $i: (X, A; X(\alpha)) \to (X, A; X(\alpha))$ be the identity map. For each $f \in \Gamma^n(X, A; X(\alpha))$, we define a homotopy h_t in $\Gamma^n(X, A; X(\alpha))$ by taking

 $h_t(x) = f(x)$ if $x \in I^n$ and $t \neq 1$, and $h_1(x) = i \circ f(x)$, $x \in I^n$. Thus the identity map induces the identity map of $M \pi_n(X, A; X(\alpha))$.

REMARK (1) If each member of $X(\alpha)$ is a single point set in X, then $M\pi_n$ (X, A: $X(\alpha)$) is the ordinary homotopy group $\pi_n(X, A)$ because every singlevalued upper semicontinuous function is a continuous function. (2) If (X, A; $X(\alpha)$) and (X, A; $X(\beta)$) are objects in M such that the set $X(\alpha)$ is contained in $X(\beta)$, then there is a natural homomorphism from $M\pi_n(X, A; X(\alpha))$ to $M\pi_n$ (X, A; $X(\beta)$), since every element of $\Gamma^n(X, A; X(\alpha))$ is an element of $\Gamma^n(X,$ A; $X(\beta)$). (3) Since the set $\Gamma^n(X, X; X(\alpha))$ contains a single element, $M\pi_n(X,$ X; $X(\alpha))=0$ for each n.

4. Uniqueness of the homotopy functors $M\pi_{n}$.

We give the compact-open topology to the set $\Gamma^n(X, A; X(\alpha))$. If K is a compact subset of I^n and U an open set in X, define $M[K, U] = \{f \in \Gamma^n(X, A; X(\alpha)) | f(K) \subset U\}$. The set of all M[K, U] such that K is compact in I^n and U is an open set in X will be used as subbasic for the topology for $\Gamma^n(X, A; X(\alpha))$. Let $X^1_{\alpha} = \Gamma^1(X, A; X(\alpha))$ and A' be the constant member of X^1_{α} defined by A'(x)= A for each $x \in I^n$, let $F^n(X^1_{\alpha}, A')$ be the set of all single-valued continuous functions $f: (I^n, \partial I^n) \to (X^1_{\alpha}, A')$. Since I^0 consists of a single element, we have $X^1_{\alpha} = F^0(X'_{\alpha}, A')$.

THEOREM 4.1. Let F: $(X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ be a map in M. Then F induces a continuous function F: $(X'_{\alpha}, A') \rightarrow (Y'_{\beta}, B')$ which is defined by $\hat{F}(s)$ = F \circs for each $s \in X'_{\alpha}$.

PROOF. Let $s \in X'_{\alpha}$ and M[K, U] be a subbasis open set such that $F \circ s \in M[K, U]$.

18 Choon Jai Rhee

-

Since s(K) is compact in X and $F: X \to Y$ is upper semicontinuous, there is an open set V containing s(K) such that $F(x) \subset U$ for each $x \in V$. Then M[K, V] is a subbasic open set in X'_{α} such that $s \in M[K, V]$ and $F \circ s' \in M[K, U]$ for each $s' \in M[K, V]$. The map $\hat{F}: (X'_{\alpha}, A') \supset (Y'_{\beta}, B')$ is continuous, and hence induces a homomorphism $\pi_n(\hat{F})$ of the ordinary homotopy group $\pi_n(X'_{\alpha}, A')$ into $\pi_n(Y'_{\beta}, B')$.

The proof of the following theorem is similar to that of theorem in oridinary

homotopy theory [2].

THEOREM 4.2. For each $n \ge 1$, the spaces $\Gamma^n(X, A; X(\alpha))$ and $F^{n-1}(X'_{\alpha}, A')$ are homeomorphic and the group $M\pi_n(X, A; X(\alpha))$ and $\pi_{n-1}(X'_{\alpha}, A')$ are isomorphic.

We let θ_n : $\Gamma^n(X, A; X(\alpha)) \rightarrow F^{n-1}(X'_{\alpha}, A')$ be the natural homeomorphism provided by Theorem 4.2 and λ_n : $M\pi_n(X, A; X(\alpha)) \rightarrow \pi_{n-1}(X'_{\alpha}, A')$ the isomorphism induced by θ_n .

THEOREM 4.3. Let $F: (X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ be a map in M. Then the following diagram commutes for each $n \ge 1$.

$$M : \pi_n(X, A; X(\alpha)) \xrightarrow{M : \pi_n(F)} M : \pi_n(Y, B; Y : (\beta))$$

 $\pi_{n-1}(X'_{n}, A') \xrightarrow{\pi_{n-1}(F)} \pi_{n-1}(Y'_{R}, B')$

PROOF. Let $[f] \Subset M \pi_n(X, A; X(\alpha))$ be represented by f. Then $\hat{F} \theta_n(f) = \theta_n(F \circ f)$ and if h_t is a homotopy in $\Gamma_n(X, A; X(\alpha))$, then so is $\theta_n \circ h_t$ in $F^{n-1}(X'_{\alpha}, A')$.

THEOREM 4.4. Let $\{M \pi'_n, \lambda'_n\}_{n=0}$ be a double sequence such that (1) $M \pi'_n$ is a covariant functor from M to the category G of groups, n > 0 and $M \pi'_0$ sends each object $(X, A; X(\alpha))$ of M to the set of M-path components of X with respect to $X(\alpha)$, and (2) for each object $(X, A; X(\alpha))$ in $M \lambda'_n$: $M \pi'_n(X, A; X(\alpha)) \rightarrow$ $\pi_{n-1}(X'_{\alpha}, A')$ is an isomorphism n > 0 such that if $F: (X, A; X(\alpha)) \rightarrow (Y, B; Y$ (B)) is a map in M then $\pi_{n-1}(\hat{F}) \rightarrow \lambda'_n \cdot M \pi'_n(F)$. Then there is a sequence $\{h_n\}_{n=0}$

Homotopy Functors Determined by Set-valued Maps 19

such that (1) for each object $(X, A; X(\alpha))$ in $M, h_0: M\pi_0(X, A; X(\alpha)) \rightarrow M\pi_0(X, A; X(\alpha)) \rightarrow M\pi_0(X, A; X(\alpha)) \rightarrow M\pi_0(X, A; X(\alpha)) \rightarrow M\pi_0(X, A; X(\alpha))$ is a one-to-one and onto function such that $\lambda_n \cdot h_n = \lambda_n$ and (2) if $F: (X, A; X(\alpha)) \rightarrow (Y, B; Y(\beta))$ is a map in M, then $h_n \cdot M\pi_n(F) = M\pi_n(F) \cdot h_n$.

PROOF. (1) Since $M \pi_0(X, A; X(\alpha))$ and $M \pi_0'(X, A; X(\alpha))$ are sets, each consisting of the set of *M*-path component with respect to $X(\alpha)$, they are the same sets. If n > 0, we let $h_n = (\lambda_n')^{-1} \lambda_n$. (2) Since $\lambda_n \circ M \pi_n(F) = \pi_{n-1}(\hat{F}) \cdot \lambda_n$ and $\lambda_n' M \pi_n'(F) = \pi_{n-1}(\hat{F}) \cdot \lambda_n'$, the conclusion is immediate.

5. The Space $S^n(\alpha)$.

Let $S^{n}(\alpha)$ be the set of cellular subsets of the *n*-dimensional unit sphere S^{n} and $p \in S^{n}$. In [3], it is shown that $M^{n}\pi_{n}(S^{n}, p; S^{n}(\alpha))$ is isomorphic to the ordinary *m*-dimensional homotopy group $\pi_{n}(S^{n}, p)$ of S^{n} .

Now we give a topology to the set $S^{n}(\alpha)$. If U and V are open-sets in S^{n} , define $N(U, V) = \{A \in S^{n}(\alpha) \mid A \subset U \text{ and } A \cap V \neq \phi\}$. The set of all N(U, V) such that U and V are open sets in S^{n} will be used as a subbasis for the topology for $S^{n}(\alpha)$.

THEOREM 5.1. For each m > 0, the space $S^n(\alpha)$ has the same *m*-dimensional ordinary homotopy group as S^n .

In the proof of this theorem, we will use the following two results in [1].

LEMMA 1. For each $F \in \Gamma^m(S^n, p; S^n(\alpha))$, there is an element $f \in F^m(S^n, p)$ and a homotopy H in $T^m(S^n, p; S^n(\alpha))$ such that for each $x \in I^m$, H(x, 0) = F(x) and H(x, 1) = f(x).

LEMMA 2. If f_0 , $f_1 \in F^m(S^n, p)$ and H is a homotopy in $\Gamma^m(S^n, p; S^n(\alpha))$ relating f_0 to f_1 , then there is a homotopy in $F^m(S^n, p)$ relating f_0 to f_1 .

PROOF OF THEOREM 5.1. We first prove that the space $S^n(\alpha)$ is path-wise connected. Suppose A and B are elements of $S^n(\alpha)$. Since A is cellular in S^n , there is a point $q \in S^n - A$. Let $f: I \to S^n(\alpha)$ be defined by $f(t) = \{(-t \cdot q + (1-t) \cdot y)/\|$ $-t \cdot q + (1-t) \cdot y\|$ $|y \in A\}$. Then $f(t) \in S^n(\alpha)$ for each $t \in I$. Now let $t_0 \in I$ and $\{t_n\}_{n=1}$ be a sequence of points of T which converges to t_0 . Suppose $f(t_0) \in N(U, V)$. Then $f(t_0) \subset U$ and there is a point $y_0 \in A$ such that $(-t_0 \cdot q + (1-t_0)y_0)/\|$

Choon Jai Rhee

20

 $-t_0q+(1-t_0)y_0 \parallel \in V$. Then there is a positive integer n_0 such that $f(t_n) \subset U$ and $(-t_n \cdot q + \cdot (1-t)y_0) / || - t_n q + (1-t_n)y || \in V$ for each $n \ge n$. Thus f is continuous at $t_0 \in I$. Similarly, for the cellular set *B*, we find a point $p \in S^n - B$ and a continuous function $g: I \rightarrow S^{n}(\alpha)$ joining B to p. Let h: $I \rightarrow S^{n}$ be a continuous function joining q to p. Piecing f, g, and h property together, we find a continuous function $l: I \to S^n(\alpha)$ which joins A to B.

Since $S^{n}(\alpha)$ is piecewise connected, it is sufficient to show that $\pi_{m}(S^{n}(\alpha), p)$

and $\pi_m(S^n, p)$ are isomorphic where p is just a point of S^n . Let us note the followings: $F^m(S^n, p) \subset F^m(S^n(\alpha), p) \subset \Gamma^m(S^n, p; S^n(\alpha))$, and every homotopy in $F^{m}(S^{n}, p)$ is a homotopy in $F^{m}(\mathbb{C}^{n}(\alpha), p)$ and every homotopy in $F^{m}(S^{n}(\alpha), p)$ is a homotopy in $\Gamma^m(S^n, p; S^n(\alpha))$.

Let $\alpha: F^m(S^n, p) \to F^m(S^n(\alpha), p)$ be the inclusion map. Then α induces a homomorphism α^* : $\pi_m(S^n, p) \rightarrow \pi_m(S^n(\alpha), p)$, where α^* is defined by $\alpha^*[f] = [\alpha(f)]$ for $[f] \in F^m(S^n, p)$ and $[\alpha(f)] \in \pi_m(S^n(\alpha), p)$. Suppose the element $[F] \in$ $\pi_m(S^n(\alpha), p)$ is represented by F. Then F is also an element of $\Gamma^m(S^n, p; S^n(\alpha))$. Let $f \in F^m(S^n, p)$ be an element which is given by Lemma 1 for F. Define $H(x, t) = \{(t \cdot f(x) + (1-t) \cdot y) / || t \cdot f(x) + (1-t) \cdot y || / y \in F(x)\} \text{ for } x \in I^m \text{ and } x \in I^m \text{ or } x \in I^m$ $0 \le t \le 1$. It is seen that H is a homotopy in $F^m(S^n(\alpha), p)$. Thus α^* is onto. If $\alpha^*[f] = \alpha^*[g]$, for [f], $[g] \in \pi_m(S^n, p)$, then $\alpha(f)$ and $\alpha(g)$ are homotopic in $F^{m}(S^{n}(\alpha), p)$. Applying Lemma 2 $\alpha(f)$ and $\alpha(g)$ are also homotopic in $F^{m}(S^{n}, p)$. Therefore α^{*} is one-to-one.

It should be remarked that Professor W.L. Strother has shown in [4] that π_m (C, p)=0, where C is the set of all continua of S^n with the topology for C defined as above.

Wayne State University

Bibliography

[1] T. R. Brahana, M. K. Fort, Jr., and W. G. Horstman, Homotopy for cellular set-valued functions, Proc. Amer. Math. Soc. 16, 1965.

[2] S.T.Hu. Homotopy theory, Academic Press, 1959.

[3] C.J.Rhee, Homotopy groups for cellular set-valued functions, Proc. Amer. Math. Soc. 19, 1968.

[4] W.L.Strother. Multi-homotopy, Duke Math. J. 22, 1955.