IDEMPOTENT GENERATED REES MATRIX SEMIGROUPS

By Jin Bai Kim

1. J. Howie [7] defined an idempotent generated semigroup S to be a semigroup of which every element is expressible as a finite product of idempotents in S. Howie proved that in [7] the subsemigroup $T_{X} \backslash S_{X}$ of the full transformation semigroup. T_{X} is an idempotent generated semigroup, where S_{X} is the symmetric group on a finite set X. Erdos [3] and Kim [8] independently proved that the multiplicative semigroup of all singular matrices in the matrix ring $M_{n}(F)$ of all n by n matrices over a field F is an idempotent generated semigroup. Preston [11] proved that for any finite set X and any finite positive integer r, a Rees factor semigroup I_{r+1} / I_{r} is completely 0 -simple and has a representation into a Rees matrix semigroup, where I_{r} denotes the ideal of the full transformation semigroup T_{X} consisting of all elements of rank less than or equal to r. We have a similar result of Preston [11] for multiplicative matrix semigroups (see [1], p.86).
Therefore it is interesting to know that what is a necessary and sufficient condition for a Rees matrix semigroup to be an idempotent generated semigroup? The object of this paper is to give such a necessary and sufficient condition.
2. For general notions about semigroups we refer to [1] and we shall follow the notation and terminology of [1].

DEFINITION. A subset B of a semigroup S is said to be an $I G$ set if every element of S is expressible as a finite product of idempotents in S.

Let $S=M^{0}(G ; I, J ; P)$ be a Rees matrix semigroup over a group with zero G^{0} with a sandwich matrix P. We define $(g)_{I J}=\left\{(g)_{i j}: i \in I\right.$ and $\left.j \in J\right\}$, where g is a fixed element of the group G. We need the following lemma to prove Theorem 1.

LEMMA 1. Let g_{0} be the identity of the group G and let $\left(g_{0}\right)_{I J}$ be an $I G$ set in $S=M^{0}(G ; I, J ; P)$. Then
(i) If an entry of P is g in G, then $(g)_{I J}$ is an $I G$ set. $\left(g^{k}\right)_{I J}$ is also an $I G$ set, where k is a positive integer.
(ii) If g in G is expressible as a finite product of entries of P, then $(g)_{I J}$ is an $I G$ set.

PROOF. (i) Let g be an arbitrary element of G and we assume that there is an entry $p_{b a}$ of P such that $p_{b a}=g$. Since $\left(g_{o}\right)_{I J}$ is an $I G$ set, for $\left(g_{0}\right)_{i b}$, there exists a set $\left\{p_{v_{1} u_{1}}, p_{v_{1} u_{2}}, p_{v_{2} u_{2}}, \cdots, p_{v_{k-1} u_{k}}, p_{v_{k} u_{k}}\right\}$ of nonzero entries of P such that $g_{o}=p_{v_{1} u_{1}}{ }^{-1} p_{v_{1} u_{2}} p_{v_{2} u_{2}}{ }^{-1} \ldots P_{v_{k-1} u_{k}} p_{v_{k} u_{k}},{ }^{-1}$, where $u_{1}=i$ and $v_{k}=b$, that is, $\left(g_{o}\right)_{i b}$ $=\left(p_{v_{1} u_{1}}{ }^{-1} u_{u_{1} v_{1}} 0\left(p_{v_{2} u_{2}}{ }^{-1}\right)_{u_{2} v_{2}} \circ \cdots \circ\left(p_{v_{k} u_{k}}{ }^{-1}\right)_{u_{k} v_{k}}\right.$, a product of idempotents. Similarly, we have that $\left(g_{o}\right)_{a j}$ is expressible as a finite product of idempotents. Then we have that $0 \neq\left(g_{0}\right) i_{0}\left(g_{0}\right)_{a j}=\left(g_{0} p_{b a} g_{0}\right)_{i j}=(g)_{i j}$, which shows that $(g)_{I J}$ is an $I G$ set. The following shows that $\left(g^{k}\right)_{I J}$ is an $I G$ set. $(g)_{i b^{\circ}}\left(g_{0}\right)_{a b} \circ\left(g_{0}\right)_{a b^{\circ}} \cdots \circ\left(g_{0}\right)_{a j}=\left(g^{\beta}\right)_{i j}$, in which the number of product signs \circ is $k-1$.
(ii) Suppose that $g=p_{i_{1} j_{1}}, p_{i_{2} j_{2}} \cdots p_{i_{n} j_{n}}$, where $p_{i_{i} j t}$ are nonzero entries of P. Then we have that $(g)_{u v}=\left(g_{0}\right)_{u i_{1}}{ }^{\circ}\left(g_{0}\right)_{j_{1} i_{2}} i^{\circ} \cdot \circ\left(g_{0}\right)_{j_{n} v}$ which proves the (ii).

THEOREM 1. $S=M^{0}(G ; I, J ; P)$ is an $I G$ semigroup if and only if (i) $\left(g_{0}\right)_{I J}$ is an $I G$ set and (ii) P contains entries which generate the group G, where g_{0} is the identity of G.

PROOF. The sufficiency of the theorem follows from Lemma 1.
(Necessity)(i) is clear. Suppose that there is an element g in G which is not expressible as a finite product of nonzero entries of P. Since S is an $I G$ semigroup, we have that $(g)_{s t}$ is expressible as a finite product of idempotents, say $(g)_{s t}=\left(p_{j . i_{1}}{ }^{-1}\right)_{i_{1} j_{1}} 0 \ldots \ldots$ $\circ\left(p_{j_{m} i_{m}}{ }^{-1}\right)_{i_{m} j_{m}}$, where $s=i_{1}$ and $t=j_{m}$. Then $g=p_{j_{1} i_{1}}{ }^{-1} . p_{j_{1} i_{2}} . p_{j_{2} i_{2}}{ }^{-1} \cdots p_{j_{m} i_{m}}{ }^{-1}$. This contra diction proves the part (ii) of the necessity.
3. To apply this Theorem 1 to, for example, full transformation semigroups, we need some additional study on Rees matrix semigroups.

DEFINITION. (1) A $n \times m$ matrix $P=\left(p_{i j}\right)$ is called a T matrix if there exist two sequences $P_{L}=\left\{p_{i_{j} j} ; j=1,2, \cdots, m\right\}$ and $P_{R}=\left\{p_{j i_{j}} ; j=1,2, \cdots, n\right\}$ of nonzero entries of P such that $P_{L} \cap P_{R}$ contains one element and for each $p_{s t}$ of the sequences there exists $p_{s v}$ or $p_{u t}$ in $P_{L} \cup P_{R}$ such that $v \neq t$ and $u \neq s$.
(2) P is called a $T(g)$ matrix if P is a T matrix and every element of $P_{L} \cup P_{R}$ is equal to g.

LEMMA. 2. If P is a $T\left(g_{0}\right)$ matrix, then $\left(g_{0}\right)_{I J}$ is an $I G$ set in $S=M^{0}(G ; I, J ; P)$, where g_{o} is the identity of the group G.

PROOF. Let $\left(g_{o}\right)_{i j}$ be an element of S. We define $d\left(\left(g_{o}\right)_{i j}, p_{s t}\right)=|j-s|+|i-t|$, where $p_{s t}$ is a nonzero entry of P with $p_{s t}=g_{0}$. Let $d\left(\left(g_{0}\right)_{i j}\right)=\inf \left(d\left(\left(g_{o}\right)_{i j}, p_{s t}\right)\right.$: $\left.p_{s t}=g_{o}\right)$. We prove this by induction on $d\left(\left(g_{o}\right)_{i j}\right)$. If $d\left(\left(g_{o}\right)_{i j}\right)=0$, then there exists $p_{j i}$ with $p_{j i}=g_{o}$, and hence $\left(g_{o}\right)_{i j}$ is an idempotent. Suppose that we have been proved that every $\left(g_{0}\right)_{i j}$ is expressible as a finite product of idempotents if $d\left(\left(g_{o}\right)_{i j}\right)<n$. Now we assume that $d\left(\left(g_{o}\right)_{i j}\right)=n$. Then there exists a nonzero entry $p_{s t}=g_{o}$ with $d\left(\left(g_{o}\right)_{i j}, p_{s t}\right)=n$. There are two cases. (i) $s \neq j$ and $i \neq t$ and (ii) $i=t$ or $s=j$. Case (i). Choosing $\left(g_{o}\right)_{t j}$ and $\left(g_{o}\right)_{i s}$, we have $0 \neq\left(g_{o}\right)_{i s} \circ\left(g_{o}\right)_{t j}$ $=\left(\mathrm{g}_{o} p_{s t} g_{0}\right)_{i j}=\left(g_{o}\right)_{i j}$. Since $d\left(\left(g_{o}\right)_{t j}\right)\left\langle d\left(\left(g_{o}\right)_{i j}\right)=n\right\rangle d\left(\left(g_{o}\right)_{i s}\right)$, by induction hypothesis, each of $\left(g_{o}\right)_{t j}$ and $\left(g_{o}\right)_{i s}$ is expressible as a finite product of idempotents, so is $\left(g_{0}\right)_{i j}$. This proves the case (i). Case (ii). Assume that $d\left(\left(g_{0}\right)_{i j}\right.$, $\left.\dot{p}_{j u}\right)=\dot{n}$ for a nonzero entry $p_{j u}=g_{o}$ of P. We may assume that $u<i$. Since $d\left(\left(g_{o}\right)_{i-1 j}, p_{j u}\right)=n-1$, we have that $\left(g_{o}\right)_{i-1 j}$ is expressible as a finite product of idempotents by induction hypothesis. Since P is a $T\left(g_{0}\right)$ matrix, the column $i-1$ of P contains an element, say $p_{s i-1}=g_{0}$. Then, for $\left(g_{0}\right)_{i s}$, we have that $d\left(\left(g_{o}\right)_{i s}\right.$, $\left.p_{s i-1}\right)=1$, by induction hypothesis, $\left(g_{o}\right)_{i ;}$ is expressible as a finite product of idempotents. Thus we have that $0 \neq\left(g_{o}\right)_{i s^{\circ}}\left(g_{o}\right)_{i-1 j}=\left(g_{o} p_{s i-1} g_{o}\right)_{i j}=\left(g_{o}\right)_{i j}$, a finite product of idempotents. This proves the Lemma 2.
The converse statement of Lemma 2 is not true by the following:
EXAMPLE. Let $G=S_{2}=\{e,(12)\}$ be the symmetric group on two letters $\{1,2\}$, where e is the identity of G. Let $I=\{1,2,3,4\}$ and $J=\{1,2\}$. Let

$$
P=\left[\begin{array}{cccc}
0 & e & (12) & (12) \\
e & e & e & 0
\end{array}\right]
$$

Then in $M^{0}(G ; I, J ; P),(e)_{I J}$ is an $I G$ set, but P is not a $T(e)$ matrix. This will be clarified by the following lemma.

LEMMA 3. Let $S=M^{0}(G ; I, J ; P)$ be an $I G$ semigroup. Then
(i) P is a T matrix.
(ii) There exist two invertible matrices U and V such that UPV is a $T\left(g_{0}\right)$ matrix, where g_{o} is the identity of G.
(iii) S and $M^{0}(G ; I, J ; U P V)$ are isomorphic.
(iv) The entries of UPV generate G.

We omit the proof of Lemma 3 and we refer to Corollary 3.12 of [1] for the
proof of Lemma 3-(iii).
Now we have our main theorem of this note.
THEOREM 2. $S=M^{0}(G ; I, J ; P)$ is an $I G$ semigroup if and only if (i) there exist invertible matrices U and V such that $U P V=T\left(g_{0}\right)$ and (ii) the entries of UPV generate the group G.

PROOF. The necessity of Theorem 2 follows from Lemma 3 and the sufficiency follows from Theorem 1.

It is not hard to prove the following theorem. (See [7].)
THEOREM 3. Let I_{r} be the ideal of a full transformation semigroup T_{X} on a finite set X consisting of all elements of rank less than or equal to r. If $S=$ $M^{0}(G ; I, J ; P)$ is a representation of a Rees factor semigroup I_{r+1} / I_{r}, then there exist invertible matrices U and V such that (i) $U P V=T\left(g_{0}\right)$ and (ii) entries of $U P V$ can generate G, where g_{0} is the identity of G.

It is also not hard to see that:
If $M^{0}(G ; I, J ; P)$ is an $I G$ semigroup, then it is regular.
We raise the following questions:
QUESTION 1. What are necessary and sufficient conditions for a semigrcup to be an $I G$ semigroup?

QUESTION 2. Is an idempotent generated semigroup regular?
4. It might be worth to read a different proof of Theorem ([8], [3]) in comparison with a proof of Erdos, and I shall give my original proof of the follwing theorem.

THEOREM. Let $M_{n}(F)$ be the set of all $n \times n$ matrices over a field F. Every singular matrix in $M_{n}(F)$ is a product of idempotent matrices in $M_{n}(F)$. Denoting the set of all singular matrices in $M_{n}(F)$ by $S_{n}(F)$, we have that $S_{n}(F)$ is an idempotent generated multiplicative semigroup.

Proof. (i) Let $A \in S_{n}(F)$. It is well knwon that any matrix A is similar to the Jordan canonical matrix $J=\left(J_{1}, J_{2}, \cdots, J_{t}\right)$ of A, where $J_{i}(i=1,2, \cdots, t)$ is the companion matrix of an invariant factor of the characteristic matrix $x I-A$ of A.

It is sufficient to prove that J is a product of idempotent matrices in $M_{n}(F)$. Since A is singular, there exists k in $(1.2, \cdots, t)$ such that J_{k} takes the form
$I_{n_{i}}$ denotes the identity of $M_{n_{i}}(F)$. Letting $J_{i} \in M_{n_{i}}(F)(i=1,2, \cdots, t)$ we have that $J=D_{2} D_{1}$, where $D_{1}=\operatorname{diag}\left(J_{1}, J_{2}, \cdots, J_{k-1}, 0, I_{n_{k}-1}, J_{k+1}, \cdots, J_{t}\right)$ and $D_{2}=\operatorname{diag}\left(I_{n_{1}}, I_{n_{2}}, \cdots, I_{n_{k-1}}, J_{k}, I_{n_{k+1}}, I_{n_{t}}\right)$.
(ii) We have that $J_{k}=L N$ and $N=A_{n_{k}} A_{n_{k}-1} \cdots A_{2} E$, where
$E=\operatorname{diag}\left(0, I_{n_{k}-1}\right)$, and $A_{i}=\operatorname{diag}\left(I_{i-2},\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], I_{n_{k}-i}\right)$ for $i=2,3, \cdots, n_{k}$.
we can check that L, E, and $A_{i}\left(i=2,3, \cdots, n_{k}\right)$ are iden potents and hence we can show that D_{2} is a product of idempotent matrices.
(iii) Now consider D_{1}. We have that $D_{1}=B_{1} B_{2} \cdots B_{k-1} E B_{k+1} \cdots B_{t}$,

$$
\mathcal{B}_{i}=\left\{\begin{array}{l}
\operatorname{diag}\left(I_{n_{1}}, \cdots, I_{n_{i-1}}^{1}, J_{i}, I_{n_{i+1}}, \cdots, I_{n_{k-1}}, E, I_{n_{k+1}}, \cdots, I_{n_{t}}\right) \text { if } i \in(1,2, \cdots, k-1), \\
\operatorname{diag}\left(I_{n_{1}}, \cdots, I_{n_{k-1}}, E, I_{n_{k+1}}, \cdots, I_{n_{i-1}}, J_{i}, I_{n_{i+1}}, \cdots I_{n_{t}}\right) \text { if } i \in(k+1, k+2, \cdots, t) .
\end{array}\right.
$$

We shall show that $B_{i}(i \neq k)$ is a product of idempotents.
(iv) We have

$$
\left.E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[[\begin{array} { l l l }
{ 0 } & { 0 } & { 0 } \\
{ 1 } & { 1 } & { 0 } \\
{ 0 } & { 0 } & { 1 }
\end{array}] \left[[\begin{array} { l l l }
{ 1 } & { 0 } & { 0 } \\
{ 0 } & { 0 } & { 0 } \\
{ 0 } & { 1 } & { 1 }
\end{array}] \left[\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\right.\right.\right.
$$

and

$$
\left.E_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[[\begin{array} { l l l }
{ 1 } & { 0 } & { 0 } \\
{ 0 } & { 1 } & { 1 } \\
{ 0 } & { 0 } & { 0 }
\end{array}] [\begin{array} { l l l }
{ 1 } & { 1 } & { 0 } \\
{ 0 } & { 0 } & { 0 } \\
{ 0 } & { 0 } & { 1 }
\end{array}] \left[\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .\right.\right.
$$

We notice thàt each $E_{i}(i=1,2)$ is a product of four idempotent matrices.
(v) We see that

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{llll}
x & y & z & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
x-1 & y & z & 0
\end{array}\right], \\
& \boldsymbol{G}_{2}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & x & y & z \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & x-1 & \boldsymbol{y} & \boldsymbol{z} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& G_{8}=G_{4} G_{3} G_{1}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
x & y & z & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text {, and } \quad G_{9}=G_{6} G_{5} G_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & x & y & z
\end{array}\right]
\end{aligned}
$$

where $G_{3}=\operatorname{diag}\left(G_{7}, 1,0\right), G_{4}=\operatorname{diag}\left(1, G_{7}, 0\right), G_{5}=\operatorname{diag}\left(0, G_{7}, 1\right), \quad G_{6}=\operatorname{diag}\left(0,1, G_{7}\right)$, and $G_{7}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,

Using the result of (iv), we see that each $G_{i}(i=3,4,5,6)$ is a product of idempotents and so is $G_{j}(j=1,2,8,9)$.
(vi) Applying the generalized results of (iv) and(v) to B_{i} in (iii), we see that B_{i} is a product of idempotents in $M_{n}(F)$ and so is D_{1}. This completes the proof.

The author presented the last Theorem of this paper in person at University of Toronto, Canada, the 72th Summer Meeting of the American Mathematical Society, August 30, 1967.

REFERENCES

[1] A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Math. Surveys of the Amer. Math. Soc. No.7, Vol. I and II, Providence, R.I., (1961) and (1967).
[2] L.E. Dickson, Linear groups, Dover Publications, New York, 1965.
[3] J. A. Erdos, On Products of idempotent matrices, Glasgow Math. Journal (1967), 118-122.
[4] E. Hewitt and H.S. Zuckerman, The irreducible representations of a semigroup related to the symmetric group, III. J. Math. (1957) 188-213.
[5] J.H. Hodges, Scalar polynomial equations for matrices over a finite field, Duke Math. J. 1968, 291-296.
[6] J.H. Hodges, Idempotent matrices, Amer. Math. Monthly (1966), 277.
[7] J.M. Howie, The semigroup generated by the idempotents of a full transformation semigroup, Journal of London Math. Soc. 41 (1966), 707-716.
[8] J.B. Kim, On singular matrices, Notices of Amer. Math. Soc. (1967) 663.
[9] J.B. Kim, On singular matrices, Czechoslovak Math. J.,18(93) (1968), 274-277.
[10] E.S. Ljapin, Semigroups, Translations of Math. Monographs of Amer. Math. Soc. 1963.
[11] G. B. Preston, Congruences on completely 0-simple semigroups, Proc. London Math. Soc. (3)11(1961), 557-576.

