
IDEMPOTENT (iENER.ATED REES MATRIX SE!\iIGROUPS 

By Jin Bai Kim 

1. ]. Howie [7] defined an idempotent generated semigrα~p 5 to be a semigroup 

of which every element is expressible as a finite product of iderppotents in S. Howie 

proved bat in [7] the subsemigrOup T x\ 5 x of tbe full trpnsforma.tion S/emigroijp 

T x is an idempotent generp.t~ semigroJip, where Sx is the symmetric group on a 
finite set X. Erdos [3] and Kim [8] independently proved that tb.e multjpliçative 

semigroup of all singt,llar matriç~ in tbe m;ltrix ring M /F) of alln by n matrices 

over a field F is an idempotent genera~d semigroup. Preston [ll] proved that 
for any finite set X and any finite positive integer r , a Rees factor semigroup 

I r+ l/Ir is completely O-simple anQ. ba.s a representation int.o a Rees matrix semi­

grOup, where 1 r denotes the ideal of the fJ.IlI tranSfOTm;itj.on semigroup T x cQnsisting 

of all elements of rank less than or equal to r. We have a simiIar result of Preston 

[11] for multiplicative matrix semigroups (see [1] , p.86). 

Therefore it is interesting to know that what is a necessary and sufficient condi­

tion for a Rees matrix semigroup to be an idempotent generated semigroup? 

The object of this paper is to give such a necessary and sufficient condition. 

2. For general notions about semigroups we refer to [1] and we shall follow the 

notation and terminology of [1]. 

DEFINITION. A subset B of a semigroup S is said to be an IG set if every 

element of S is expressible as a finite product of idempotents in 5. 

Let S=Mo(G; 1, J; P) be a Rees matrix semigroup over a group with zero GO 

with a sandwich matrix P. We define (g) I] = {(g)jj: z" ε 1 and j ε j}， where g 

is a fixed e1ement of the group G. We need the following lemma to prove Theorem l. 

LEMMA 1. Let go be the identity .01 the gr.oup G and let (go) IJ be an IG set z"n 

5=11ι。 (G; 1, J; P). Then 

(i) 11 an entry .01 P is g z"n G, then (g) IJ z"s an IG set. (gk) IJ is also an IG 

set, where k is a p.oszïive z"nteger. 

(ii) lf g z"n G isexpressible as a linite pr.oduct .01 entries .01 P , then (g) IJ is an 

IG set. 
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PROOF. (i) Let g be an arbitrary element of G and we assume that there is an 

entry ha of P such that ha=g. Since (go)U is an IG set, for (go)ib' there 

exists a set {PV1μl' P V1U2' PV2U2' ...• P Vk-1Uk’ PVkUk} of nonzero entries of P such 

that g。 =PU1Zt1-l PUIμ껴tY2X2-1 ... pUk-iμ/VkUk' -1, where κ1 =z' and vk=b, that is, (go)ib 

= (PV1111-1) μ1V 1 0 (PV2μ2 -1)U2V2 o ••. o(pνkUk -1)ukUk’ a product of idempotents. Similarly. we 

have that (gO)aj is expressible as a finite product of idempotents. Then we have 

that O:;i: (go) ibo(go)aj= (gohagO)ij=(g)jj , which shows that(g)r! is an IG ‘ set~ 

The following shows that (gk)r! is an IG set. (g)ibo(gO)ab o(go)abo •.• o(gO)aj=(g")ij, 

in which the number of product signs 0 is k-l. 

(ii)Suppose that g=Pidl' Pμj2---Pz·”jn， where A·tjt are nonzero entries of p. Then 

τve have that (g)uv=(go)μz?(go)jii2。 ... 。 (go)jnU which proves the (ii). 

THEOREM 1. S=MO(G;I,J ;P) is an IG semigγoup zïand onlyif(i) (g.)r! z's an 

IG set and (ii) P contains entrz'es whz'ch geηerate the groz‘P G, where go z's the 

identzïy of G. 

PROOF. The sufficiency of the theorem follows from Lemma 1. 
<(Necessity)(i) is clear. Suppose that there is an element g in G which is not expressible 

as a finite product of nonzero entries of P. Since S is an IG semigroup, we have that 

(g)st is expressible as a finite product of idempotents, say (g) st=(Pj.i1-1)id1o" 

。 (P힘j’m’n“싸싸’Jιμiιμμn 
contra diction prove않s the par야t (ii) 0아f the necessity. 

3. To apply this Theorem 1 to, for example, full transformation semigroups, 

we need some additional study on Rees matrix semigroups. 

DEFINITION. (1) A nXm matrix P= (P;j) is called a T matη~'x if there exist two 

'Sequences P L = {와·1j;j=1， 2， …, 쩌and P R ={Pjij: j =l , 2, …, n} of nonzero entries of 

P such that PLnPR contains one element and for each Pst of the sequences there 

exists Psv or φut in PLUPR such that ν :;i: t and μ:;i: s. 

(2) P is cal1ed a T(g) matrix if P is a T matrix and every element of PLUPR 

is equal to g. 

LEMMA. 2. If P is a T(go) matrix, then (go)r! z's an IG set z'n S=Mo(G;I,J ;P) , 

where go z's the ideηtzïy of the group G. 



1 deneþotent Generated Rees M atrix Semz"grouþs 9 

PROOF. Let (go)jj be an element of S. We define d((go)η ， Pst)= Ij-sl + Iz"-tl. 

where Pst is a nonzero entry of P with Pst=go. Let d((go)jj)=inf(d((go)쉰， Pst): 

Pst=go). We prove this by induction. on d((go)jj)' If d((go)jj) =0. then there 

exists Pjj with Pjj=go , and hence (go)jj is an idemr;otent. Supr;ose that we have 

been proved that every (go)η is expressible as a finite product of idempotents if 

4((go\j) <n. Now we assume that d((go)jj) =n. Then there exists a nonzero entry 

Þst=go with d((go ),. j' Pst) =n. There are two cases. (i) s~j and i~t and (ii) 

i=t or s=j. Case (i). Choosing (go)tj and (go)js , we have O~(go)jso(go)tj 

= (go PstgO)ij = (go)jj' Since d((go)tj) <d((go)ij) =n>d((go)js) , by induction hypo­

thesís, each öf (go)tj and (go)js is expressible as a finite. product of 

idempotents, so is (go)jj' This proves the case (i). Case (ii). Assume that d((go)jj. 

Þju)=n for a nonzero entry Pju=go of P. We may assume that μ <i. Since 

4((go)j_lj, Pju) =η-1 ， we have that (go)j-lj is expressíble as a finite product. of 

idempotents by induction hypothesis. Since P ís a T(go) matrix. the column i-1 

of P contains an element, say PSI"-l =go. Then, for (go)js. we have that d((go)js. 

Þsj-l) = 1, by induction hypothesis, (go);; is expressible as a finíte product of 

idempotents. Thus we have that O~(go)jso(gO)j_lj= (go PSj-lgO)jj= (go)jj' a finite 

product of idempotents. This proves the Lemma 2. 

The converse statement of Lemma 2 is not trueby the following: 

EXAMPLE. Let G=S2= {e , (12)} be the symmetric group on two letters 

where e is the identity of G. Let 1 = {1 , 2, 3, 4} and] = {1, 2}. Let 

P= 
o e (12) (12) 

e e e 0 • 

{1.2}. 

Then in MO(G;I,]:P) , (e) If is an IG set, but P is not a T(e) matrix. This 

will be clarified by the following lemma. 

LEMMA 3. Let S=Mo(G:I,]:P) be an IG semigroup. Theη 

(i) P is a T matrix. 

(ii) There exist two inνertible matrices U and V sμch that UPV is a T(go) 

matrix, where go z"s the identity 01 G. 

(iii) S and MO(G:I , ]; UPV) are z"somorPhic. 

(iv) The entries 01 UPV generate G. 

We omit the proof of Lemma 3 and we refer to Corollary 3. 12 of [11 for the 
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proof of Lemma 3 (iii). 

Now we have our main theorem of this note. 

THEOREM 2. S=Mo(G;I.];P) is an IG semig1'oup il and on!y il (1) the1'e exist 
jnνertz"ble mat1'ices U and V such that UPV=T(go) and (ii) the entries 01 UPV 

generate the g 1'oup G. 

PROOF. The nec않sity of Theorem 2 fol1ows from Lemma 3 and the sufficiency 
follows from Theorem 1. 

It is not hard to prove the following theorem. (See [7].) 

THEOREM 3. Let Ir be the z"dea! 01 a lull t1'anslo1'mation semig1'oup Tx on a 

lint"te set X consz"s#ng 01 all elements 01 rank less than 01' equal to r. 11 $= 

MO(G;I.];P) is a reþresentation 01 a Rees lactor semig1'oμ:p Ir+ II 1 r. then the1'c 

exist z"nve1'#ble mat1'ices U and V such that (i) U PV = T(g 0) and (ii) entries of 

UPV can gene1'ate G. whe1'e go is the identity 01 G. 

It is also not hard to see that: 

If MO(G;I.];P) is an IG semigroup. then it is regular. 

We raise the following questions: 

QUESTION 1. What are necessary and sufficient conditions for a semigroup to 

be an 1 G semigroup ? 

QUESTION 2. Is an idempotent generated semigroup regular? 

4. It might be worth to read a different proof of Theorem ([8]. [3]) in 

comparison with a proof of Erdos. and 1 shall give my original proof of the 

follwing theorem. 

THEOREM. Let Mn(F) be the set 01 all nX η mat1'ices ove1' a lield F. Eve1'Y 
sz·ηgμla1' matl’ix in M n(F) z"s a p1'odμct 01 idempotent mat1'ices in Mn(F). DenoUng 

the set 01 all singula1' mat1'ices in Mn(F) by Sn(F). we have that Sn(F) is an 

idempotent gene1'ated multiPlicative semig1'oup. 

PROOF" (i) Let A ε Sn(F). It is well knwon that any matrix A is similar to the 

Jordan canonical matrix ] = (11. h. …. ]t) of A. where ]; (i = 1.2 •. "". t) is the com­

panion matrix of an invariant factor of the characteristic matrix xI -A of A. 
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It is sufficient to pFOVe that f is a product of idempotent ma,triees in M n(F). Since 

A is singular, there exists k in (1. 2, …, t) such that μ takes th~ fo째 

o 100 … O 

001 0 … O 

h=| R-----9 ..... X .. ，샤 
, .••••• p, •••• " •••• ~， •••• ，~ •• , •••••• , •• 
0 0 0 0 ••• 1 

0 a b c '" d 

1 n; denotes the identity qf M~시(F). LettiI}g /; E Mn ;CF) Ci=!. 2, ... ,1) w~ have that 

f=D2Dl' wher~ D1=diag(Jl .J2 • .... fk- l' O, l n,,-1.1k+l. …, ft) allß 

D2=diag(Ial, It2, ---, Ink-l,fh, Ink+1, I까). 
(ii) We have that f ,,=LN and N=An"A

nk
- 1".A2E. where 

E=diag(O.1 n,,-I)' and Ai=diag (I i-2 1 1 

0 
• Inri) for t'=2.3. …. n,,' 

w~ can cheçk that L. E , and A; (i =2.~， …, nk) aF~ iden po~~ts am;l hefl,lre w~ can 

show that D2 is a product of idempotent matrÌCes. 

(iii) Now consider D
1
• We have that Dl = ßIB2 ... Bk..,-lEBII+ 1…Bt. 

D _Jdiag(l，μ .... , I n;,.I.!,..In,'+l' .... I nk_1• E.I따+1' ... , l n/) 표 i ε (1.2. ….k-1). 

•;-, diag(l ....... ,1 .... E,l … 1 ... .• J;.I ... . , ... 1 .. ) if i ε (k+1. k+2. …• t). 
a nl Rk-1” κk+1” ni-1’ Jt ’ n;+l’ 까 

We shall show that B;(i낯k) is a product of idempotents. 
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We notiée thàteach Ej (i = 1.2) is a product of four idempotent matrices. 

(v) We see "that 
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G8=G4G3G 1 =1 
0 0 1 0 and G9=G6G5 GZ= 0 0 1 0 

x y z 0 
’ 

0 0 0 l 

0 0 0 0 0 x y z 

where G3=diag(G7, 1, 0), G4=diag(1, G7, 0) , G5=diag(0, G7, 1), G6=diag(0, 1, G7). 

ro 1 and G7 = I 
1 OJ , 

Using the result of (iv) , we see that each Gj (i =3, 4, 5, 6) is a product of idem­

potents and so is Gj (j = 1, 2, 8, 9). 

(vi) Applying the generalized results of (iv) and(v) to Bj in (iii), we see that 

B j is a product of idempotents in Mn(F) and so is Dl. This completes the proof. 

The author presented the last Theorem of this paper in person at University of 

1'oronto, Canada, the 72th Summer Meeting of the American Mathematical Soc­

iety, August 30, 1967. 

W"est Virginia University 

Morgantown, West Virginia 
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