IDEMPOTENT GENERATED REES MATRIX SEMIGROUPS
By Jin Bai Kim

1. J. Howie [7] defined an idempotent generated semigroup S to be a semigroup
of which every element is expressible as a finite product of idempotents in S. Howie
proved that in [7] the subsemigroup 7'y\Sy of the full transformation semigroup
Ty is an idempotent generated semigroup, where Sy is the symmetric group on a
finite set X. Erdos [3] and Kim [8] independently proved that the multiplicative
semigroup of all singylar matrices in the matrix ring M (F) of all # by » matrices
over a field F is an idempotent generated semigroup. Preston {11} proved that
for any finite set X and any finite positive integer », a Rees factor semigroup
I,,y/Ir is completely O-simple and has a representation into a Rees matrix semi-
group, where I, denotes the ideal of the full transformation semigroup T, consisting
of all elements of rank less than or equal to . We have a similar result of Preston
[11] for multiplicative matrix semigroups (see [1], p.86).

Therefore it is interesting to know that what is a necessary and sufficient condi-

tion for a Rees matrix semigroup to be an idempotent generated semigroup ?
The object of this paper is to give such a necessary and sufficient condition.

2. For general notions about semigroups we refer to [1] and we shall follow the
notation and terminology of [1].

DEFINITION. A subset B of a semigroup S is said to be an IG sef if every
element of S is expressible as a finite product of idempotents in S.

Let S=M" (G; I, J; P) be a Rees matrix semigroup over a group with zero G
with a sandwich matrix P. We define (g);;= {(g)iy: €1 and j= ]}, where g
is a fixed element of the group &G. We need the following lemma to prove Theorem 1.

LEMMA 1. Let g, be the identity of the group G and let (g,); 7 be an I G set in
S=M" (G; I, J: P). Then
(1) If an entry of P is g in G, then (g)i; ts an IG sel. (g") 17 ts also an IG

set, where k is a positive integer.
(ii) If g in G is expressible as a finite product of entries of P, then (g); 7 IS an

IG sel.
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PROOF. (i) Let g be an arbitrary element of G and we assume that there is an
entry py, of P such that p,,=g. Since (g);; is an IG set, for (g,); there
exists a set {pvmf pvmz’ Py pﬂ;.--mk’ pﬂk#k} of nonzero entries of P such

that gozpvlul_l pﬂm-apﬂzﬂz-l'"ka-lﬂkpﬁkuk. _1’ where “1=z‘ and vk:b! that is, (ga):'b

= <pv1ufl)#1vl‘“(pvgu{l)uzz;z 0+++0(Py 4, Du, 2 Product of idempotents. Similarly, we

have that (g,),; is expressible as a finite product of idempotents. Then we have

that 07 (go) o (gy) 0i= (Qopp.80);;=(&)ij» Which shows that (g)yy is an IG set.
The following shows that (g% ;7 isan IG set. (£);5°(&0)gp ©(g0) s 0 (go)yj= (& @:y:

in which the number of product signs ¢ 1s &-l.

(i1) Suppose that g= b; i pf?jz".pin Ix where b; ;¢ are nonzero entries of P. Then

we have that (g),,=(g.),;°(g0) flfzﬂ.nﬂ(‘gO) j.p Which proves the (ii).

THEOREM 1. S=M"(G;I,J;P) isan IG semigroup if and only if () (g0 is an

IG set and (ii) P contains entries which generate the group G, where g, is the

zdentity of G.

PROOF. The sufficiency of the theorem follows from Lemma 1.

{Necessity)(1) is clear. Suppose that there is an element g in &G which is not expressible
as a finite product of nonzero entries of P. Since S 1s an IG semigroup, we have that

(g); is expressible as a finite product of idempotents, say (g) Sf:(ﬁj.z"{l)ﬁj;ﬂ"""
pj -1"-pj . -1 This

°(2j, 5, Vi e Where s=iy and #=je Then £=;;" Bjgy b, ™0 4.

szl’ﬂ
contra diction proves the part (i1) of the necessity.

122

3. To apply this Theorem 1 to, for example, full transformation semigroups,

we need some additional study on Rees matrix semigroups.

DEFINITION. (1) A nXm matrix P=(p;;) is called a T matrix if there exist two
sequences Py= {p,-ﬂ-:j=1, 2, «, m}and PRz{pﬁ-j:j=1,2, ... #} of nonzero entries of
P such that P;NPp contains one element and for each p, of the sequences there

exists p,, or p, in P;UPp such that v#¢ and ##s.
(2) P is called a T(g) matrix if P is a T matrix and every element of P;UPp

1s equal to g.

LEMMA. 2. If P is a T(g,) matrix, then (g,)rrts an IG set in S:MD(G;I,];P),
where g, is the identity of the group G.
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PROOF. Let (g.);; be an element of S. We define d((g,);;, ps) =17—s|+i—1l,
where pg is a nonzero entry of P with py=g.. Let d((g,);;) =1nf(d((go);j Dsp)*
Pg=go). We prove this by induction_ on d((g.);;). If d((g.,);;)=0, then there
exists p;; with p;=g, and hence (g,);; is an idemgotent. Suprose that we have
been proved that every (g.);; i1s expressible as a finite product of idempotents if
d (_(g,_,)ff-) <n. Now we assume that d((g,);;)=n. Then there exists a nonzero entry
ps=go with d((g.);j, ps) =n. There are two cases. (i) s#; and ¢7{ and (ii)
i=t or s=j. Case (i). Choosing (go);; and (g.);;, Wwe have 07#(go);s0(g0);;
= (8o Pst80) ;= (o)ij» SINCE d((go)1;) <d((go);;) =n>d((g,);5), by induction hypo-
thesis, each of (g.);; and (g.);; is expressible as a finite product of
idempotents, so is (g,);;» This proves the case (i). Case (ii). Assume that 4 ((gﬂ),-j,
p;)=n for a nonzero entry p;,=g, of P. We may assume that #<z. Since
d((ga),-_lj, p;»)=n—1, we have that (g,);.;; is expressible as a finite product -of
idempotents by induction hypothesis. Since P is a T(g,) matrix, the column ¢ -1
of P contains an element, say p._i=4g&.. Then, for (g,);, we have that d((g.);s
P 1=1, by induction hypothesis, (g,);; is expressible as a finite product of
idempotents. Thus we have that 07(g.);s°(g0)i-1;=(&o Psi-180)i;=C(&0)ij» 2 {inite

product of idempotents. This proves the Lemma 2.
The converse statement of Lemma 2 is not true by the following:

EXAMPLE. Let G=S,={e, (12)} be the symmetric group on two letters {1,2},

where ¢ is the identity of G. Let I=1{1,2,3,4} and J={1,2}. Let
P_[ 0 e (12) (12)]

e e € 0
Then in M%G;1I,]:P), (e)rs is an IG set, but P is not a 7 (e) matrix. This

will be clarified by the following lemma.

LEMMA 3. Let S=M*(G;I,]:P) be an IG semigroup. T hen
(1) P is a T matrix.

(ii) There exist two invertible matrices U and V such that UPV is a T(g,)

matrix, where g, is the identity of G.
(i) S and M*(G;I, ] : UPV) are isomorphic.
(iv) The entries of UPV generate G.

We omit the proof of Lemma 3 and we refer to Corollary 3.12 of [1} for the
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proof of Lemma 3—(jii).
Now we have our main theorem of this note.

THEOREM 2. S=M%G:]I, JiP) is an IG semigroup if and only if (i) there ex:ist
inveriible matrices U and V such that UPV=T(g,) and (ii) the eniries of UPV
generale the group G.

PROOF. The necessity of Theorem 2 follows from Lemma 3 and the sufficiency
follows from Theorem 1.

It is not hard to prove the following theorem. (See [7].)

THEOREM 3. Let I, be the ideal of a full transformation semigroup Ty on a
fintte set X comsisting of all elements of rank less than or equal to r. If S=
MO(G;I , ] P) is a representation of a Rees factor semigroup I,.(/I,, then there
exist tnvertible matrices U and V such that (1) UPV=T(g,) and (ii) entries of
UPV can generate G, where g, is the identily of G,

It is also not hard to see that:
If M°(G;I, J;P) is an IG semigroup, then it is regular.
We raise the following questions:

QUESTION 1. What are necessary and sufficient conditions for a semigrcup to
be an IG semigroup ?

QUESTION 2. Is an idempotent generated semigroup regular ?

4, It might be worth to read a different proof Of Theorem ([8], [3]) in
comparison with a proof of Erdos, and I shall give my original proof of the

follwing theorem.

THEOREM. Let M _(F) be the set of all nXn malrices over a field F. Every
sitngular matrix in M, (F) is a product of idempotent matrices in M,(F). Denoting
the set of all singular mairices in M,(F) by S,(F), we have that S,(F) is an

tdempotent generated multiplicative semigroup.

PROOF. (i) Let A= S, (F). It is well knwon that any matrix A is similar to the
Jordan canonical matrix J=(Jy, Jo, **,J,) of A, where J; (/=1,2,---,¢) is the com-

panion matrix of an invariant factor of the characteristic matrix x/-A of A.
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It 1s sufficient to prove that J is a product of idempotent matrices in M, (¥). Since

A 1s singular, there exists £ in (1.2, +--,#) such that J, takes the form
-0 1 0 0 0 ~

0 0 1 0 0
]k= 0 0 0 1 s 0

e L AL A AL R L R AL ELT RAL R LLALLR LSS Rd A

!‘llllllll'!, IIII*, illl!g“l!!!."ll'_‘l.*.".

0 0 0 0 1
-0 a b ¢ d °

I 7 denotes the identity of M j,%_(F)... Letting J; Mﬂ; (F) (1=1,2, -, we have that
]=D2D1, Where D]_:diag(]l,]z, '",]k_l, 0, Iﬁk-i’ Jk.,.l: "?l];‘) aﬂ-d
D2==diag(Im. Lo s Ly, T p T PO

(11) We have that J =LN and N =4, Anb_l---AzE. where

-4
r 1 O 0 0 7
1 0 . 0 0
0 1 0O 0
L= | cteeecerercttteccenresssscccncssncncocnncs

we can check that L, E, and A4; (:=2,3, ---,m;) are iden potents and henee we can
show that D, is a product of idempotent matrices.
(iii) Now consider Dl. We have that D\=BByB,_1EB; 1B,
B._—_{diag(Inf "% I’?:’.—I’jf’ I”:'+1’ "% I”k—l’ E, I **%s Iﬂ;) if 7 & (1: 2: *%s k_l)r

» ’zk+1l
\diag(Z,,, =1, , EI, =D,  Jpl, 1,5 if i€ (k+1LE+2, 1)

ne-1" T T Nper

We shall show that B;(2%) is a product of idempotents.
(iv) We have

1010710197 0007p 10 05r 1 0 07
Ey= 100‘::'010‘*110 ‘000!‘010’l

C oo ol L oooldl oo 18l o1 140 00 off
and

- 0008 0007 100ar 11077 00 04
E2='001'=‘ 10“011'1 00”010’_

D o1 ol L U o 0 04l 00 1495 00 11
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We notice that each E; (=1,2) is a product of four idempotent matrices.

(v) We see that

(x y z 0Y,1 0 O 1Y/ 1 0 0 0N\
=] 90 1 0 0 1 0 O 0 1 0 O
0 0 1 O 0.0 1 O 0 0 1 0O |
N 0 0 0 0 - - 0 0 0 0 . x_ly 2z 0 J.
r0 0 0 OO O O O~y O -1 9 2z 9
Go= O  y» =z | |1 1 0 O O 1 0 O
0O 0 1 O 0 0 1 O 0O 0 1 O
.0 0 0 1~ ~0 O O 1~ ~0 O 0 1/
Gs=6GG1=| © O 1 O land Gy=GeGsG=| 0 O 1 O
© y oz 0 0 0 0 1
-0 0 0 0 - L0 x 9y oz

where GS——-diag(G7, 1,0), G4=diag(l, G;,0), Gs=diag(0, G7,1), Gg=diag(0,1, G7),

and G7=[O 1]
1 Od,

Using the result of (iv), we see that each G; (/=3,4,5,6) is a product of idem-
potents and so is G&; (7=1,2,8,9).
(vi) Applying the generalized results of (iv) and(v) to B; in (iii), we see that

B; is a product of idempotents in M,(F) and so is D,. This completes the proof.

The author presented the last Theorem of this paper in person at University of
Toronto, Canada, the 72th Summer Meeting of the American Mathematical Soc-
iety, August 30, 1967.

West Virginia University

Morgantown, West Virginia
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