ON COMPLETION OF MEASURE SPACES

By Yu-Lee Lee

The purpose of this paper is to investigate the relationship between the completion of a measure space and the completion derived from Hopf extension. Let (X, α, μ) be a measure space. Define $\alpha' = \{E \cup A | E \in \alpha, A \subset B \text{ for some } B \in \alpha \text{ such that } \mu(B) = 0\}$, and define μ' on α' by the rule $\mu'(E \cup A) = \mu(E)$. We know

that \mathscr{A}' is a σ -algebra of subsets of X, and that μ' is a well-defined complete measure on \mathscr{A}' . This measure space (X, \mathscr{A}', μ') is called the completion of (X, \mathscr{A}, μ) . If X is an arbitrary set and \mathscr{A} is an algebra of subsets of X, let μ be a countably additive measure on \mathscr{A} . Define a set function $\overline{\mu}$ on P(X), the family of all subsets of X, as follows: for $T \subset X$, let $\overline{\mu}(T) = \inf\{\sum_{n=1}^{\infty} \mu(A_n) | T \subset \bigcup_{n=1}^{\infty} A_n \text{ and} A_1, A_2, \cdots, A_n, \cdots \in \mathscr{A}\}$. Then by the Hopf extension theorem we know that $\overline{\mu}$ is an outer measure on P(X), $\overline{\mu}$ is equal to μ on the algebra \mathscr{A} and $\mathscr{A} \subset \overline{\mathscr{A}}$, where $\overline{\mathscr{A}}$ is the family of all $\overline{\mu}$ -measurable subsets of X and certainly $\overline{\mu}$ is countably additive on $\overline{\mathscr{A}}$.

If α is a σ -algebra, then $(X, \overline{\alpha}, \overline{\mu})$ is a complete measure space since it is derived from an outer measure. We wish to show that $(Z, \alpha', \mu') = (Z, \overline{\alpha}, \overline{\mu})$ for any decomposable measure space (Z, α, μ) .

DEFINITION. Let (X, α, μ) be a measure space. Suppose that there is a subfamily \mathscr{F} of α with the following properties: (i) $0 \le \mu(F) \le \infty$ for all $F \in \mathscr{F}$,

(ii) the sets in F are pairwise disjoint and ∪F = X,
(iii) if E∈α and μ(E) <∞ then μ(E) = ∑µ(E∩F) where the sum is defined as the supremum of the sums ∑µ(E∩F), where Ø runs through all finite subfamilies of F.
(iv) if S⊂X and S∩F∈α for all F∈F, then S∈α.
Then (X, α, μ) and μ itself are said to be *decomposable* and F is called a

decomposition of (X, α, μ) .

LEMMA. Notation as above. If (X, α, μ) is a decomposable measure space with decomposition \mathcal{F} , then (X, α', μ') is also decomposable with decomposition \mathcal{F} .

PROOF. The conditions (i) and (ii) are clearly satisfied. If $E \bigcup A \in \mathcal{A}'$, $\mu'(E \bigcup A) = \mu(E) < \infty$ and $A \subset B \in \mathcal{A}$ with $\mu(B) = 0$, then $\mu'(E \bigcup A) = \mu(E) = \sum_{F \in \mathcal{F}} \mu(E \cap F)$

2 Yu - Lee Lee $= \sum_{F \in \mathcal{F}} \mu'((E \cap F) \cup (A \cap F)) = \sum_{F \in \mathcal{F}} \mu'((E \cup A) \cap F). \text{ If } S \subset X \text{ and } S \cap F \in \mathcal{A}' \text{ for all } F$ $\Subset \mathcal{F} \text{ then } S \cap F = E_F \cup A_F \text{ where } E_F \Subset \mathcal{A} \text{ and } A_F \subset B_F \Subset \mathcal{A} \text{ and } \mu(B_F) = 0, \text{ and } S$ $= \bigcup_{F \in \mathcal{F}} (S \cap F) = \bigcup_{F \in \mathcal{F}} (E_F \cup A_F) = \bigcup_{F \in \mathcal{F}} E_F \cup \bigcup_{F \in \mathcal{F}} A_F.$ $\text{Now} \bigcup_{F \in \mathcal{F}} A_F \subseteq \bigcup_{F \in \mathcal{F}} B_F \Subset \mathcal{A} \text{ and } by(\text{iii}) \mu(\bigcup_{F \in \mathcal{F}} B_F) = \sum_{F \in \mathcal{F}} \mu(B_F) = 0, \bigcup_{F \in \mathcal{F}} E_F \Subset \mathcal{A}', \text{ hence } S \Subset \mathcal{A}'.$ $\text{THEOREM. Notations as above. If } (X, \mathcal{A}, \mu) \text{ is a decomposable measure space, then } \overline{\alpha} = \mathcal{A}' \text{ and } \overline{\mu} = \mu' \text{ for sets in } \overline{\alpha}.$

PROOF. It is clear that $\mathcal{A}' \subset \overline{\mathcal{A}}$. If $A \in \overline{\mathcal{A}}$ such that $\overline{\mu}(A) = 0$, then we can find a decreasing sequence $\{B_n\}$ in \mathcal{A} such that $\mu(B_n) < \frac{1}{n}$ and $B_n \supset A$ for each n. Let $B = \bigcap_{n=1}^{\infty} B_n$. Then $B \in \mathcal{A}, A \subset B$ and $\mu(B) = 0$. Hence $A \in \mathcal{A}'$. For any $C \in \overline{\mathcal{A}}$ with $\overline{\mu}(C) < \infty$, we can also find a decreasing sequence $\{D_n\}$ in \mathcal{A} such that $D_n \supset C$ and $\overline{\mu}(D_n \setminus C) < \frac{1}{n}$ for each n. Hence $\overline{\mu}((\bigcap D_n) \setminus C) = \overline{\mu}(\bigcap_{n=1}^{\infty} (D_n \setminus C))$ $= \lim_{n \to \infty} \overline{\mu}(D_n \setminus C) = 0$. By the above argument we have $(\bigcap D_n) \setminus C \in \mathcal{A}'$. Also $\bigcap D_n \in \mathcal{A}'$. Hence $C = (\bigcap D_n) \setminus ((\bigcap D_n) \setminus C) \in \mathcal{A}'$. If $\overline{\mu}(C) = \infty$ since (X, \mathcal{A}, μ) is decomposable with decomposition \mathcal{F} . $C = \bigcup_{F \in \mathcal{F}} (C \cap F)$ and $C \cap F \in \overline{\alpha}$ and $\overline{\mu}(C \cap F) < \infty$ for each F. Hence $C \cap F \in \mathcal{A}'$ and by the lemma, $C \in \mathcal{A}'$. Since $\mu(A) = \mu'(A) = \overline{\mu}(A)$ for any $A \in \alpha$ and $\overline{\alpha} = \alpha'$, hence for any $E \cup A \in \alpha$ with $E \in \alpha$ and $A \subset B \in \alpha$ with $\mu(B)$ = 0. Then $\overline{\mu}(E \cup A) \leq \overline{\mu}(E) + \overline{\mu}(A) \leq \overline{\mu}(E) + \overline{\mu}(B) = \mu(E) = \mu'(E \cup A) = \overline{\mu}(E) \leq \overline{\mu}(E \cup A)$. The following example will show that the theorem might be false if (X, α, μ) is not decomposable.

EXAMPLE. Let X = [0, 1] and α consists of all subsets $A \subset X$ such that either A or $X \setminus A$ is countable (including finite sets and the null set), and let μ be the counting measure on α . Then (X, α, μ) is a complete measure space and $\alpha = \alpha'$. Let A be any uncountable subset of X such that $X \setminus A$ is also uncountable. Then $A \in \overline{\alpha} \setminus \alpha'$.

Kansas State University Manhattan, Kansas

REFERENCE

[1] E. Hewitt and K.Stromberg: Real and Abstract Analysis, Springer-Verlag, New York, 1965.