A Note on the Complexification of a Ring

YOUNG L. PARK

The main objective of this note is to describe a relationship between the structure space of a ring and the corresponding space of its complexification. Also as byproducts it is shown that the maximal ring of quotients Q(C(X)) of the ring C(X) of all complex-valued continuous functions on X does not have any complex ideal if X is a separable metric space without isolated points, and the structure space of Q(C(X)) is the projective cover (4) of the Stone-Čech compactification βX of a completely regular Hausdorff space X.

1. Complexification. The symbol A will be used throughout this section to represent a commutative ring with unit e. Consider the cartesian product $A \times A$, and define the operation + and \cdot on $A \times A$ by (a,b)+(c,d)=(a+c,b+d) and $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$. Put $A_C=(A\times A,+,\cdot)$. Then it is readily verified that A_C is a commutative ring with unit (e,0) and the mapping $a \longrightarrow (a,0)$ is an isomorphism of A into A_C . We call the ring A_C the complexification of A. Also it is easy to check that if I is an ideal in A then its complexification I_C is also an ideal in A_C . For a subset S of A_C we put

 $r(S) = \{a \in A \mid (a, b) \in S \text{ for some } b \in A\},\$ $i(S) = \{b \in A \mid (a, b) \in S \text{ for some } a \in A\}.$

Then clearly $S \subset r(S) \times i(S)$. We prove following lemmas.

LEMMA 1. If J is an ideal in A_C , then r(J)=i(J) $(\equiv I)$ and I is an ideal in A.

Proof. Let $x \in r(J)$. Then there exists $x' \in A$ such that $(x, x') \in J$. Since $e \in A$, $(0, e)(x, x') = (-ex', ex) = (-x', x) \in J$; hence $x \in i(J)$, i. e., $r(J) \subseteq i(J)$. Also $i(J) \subseteq r(J)$ can be shown in the same way. To show I an ideal, let $x, y \in I$. Then there exists x', $y' \in A$ such that (x, x'), $(y, y') \in J$. Hence $(x+y, x'+y') \in J$, i.e., $x+y \in I$. Since J is an ideal in A_C and $(x, 0) \in A_C$, $(x, 0)(y, y') = (xy, xy') \in J$; and hence $xy \in I$. Finally let $a \in A$ and $x \in I$. Then there exists $x' \in A$ such that $(x, x') \in I$, and $(a, 0)(x, x') = (ax, ax') = (ax, ax') \in J$, i.e., $ax \in I$.

The proof of the following Lemma is straightforward.

LEMMA 2. For an ideal I in A, $(A/I)_C \cong A_C/I_C$.

Received by the editors March 2, 1970.

REMARK. We remarked that, for a subset $J \subset A_C$, $J \subset r(J) \times i(J)$. In general $J \neq r(J) \times i(J)$ even though J is an ideal in A_C . For instance, consider $A = \mathbb{Z}_2$ and $J = \{(0, 0), (1, 1)\}$, then clearly J is an ideal A_C . But $r(J) = i(J) = \{0, 1\}$ and $J \neq r(J) \times i(J)$. This means that for arbitrary ideal J in A_C there may not exist an ideal I in A such that $J = I_C$. However, we have the following situation.

DEFINITION 1. A ring A is said to be weakly convex if all $e+a^2$, $a \in A$ are invertible in A.

LEMMA 3. Let A be a weakly convex ring. If M' is a maximal ideal in A_C , then there exists a maximal ideal M in A such that $M' = M_C$.

Proof Put M = r(M'). Then M is an ideal in A. We show M is proper. Suppose $e \in M$, then $(e, b) \in M'$ for some $b \in A$, and hence $(e(e+b^2)^{-1}, -b(e+b^2)^{-1})(e, b) = (e, 0) \in M'$, a contradiction; hence $e \notin M$. Clearly $M' \subseteq M \times M$. Take any $(a, b) \in M \times M$. Suppose $(a, b) \notin M'$. Then there exists $(x, y) \in A_C$ such that $(e, 0) - (a, b)(x, y) \in M'$ since $(a, b) + M' \neq 0$ in A_C/M' . Then $(e - (ax - by), -(ay + bx)) \in M'$. Hence $e - (ax - by) \in M$ where $a, b \in M$ and $x, y \in A$. This implies that $e \in M$, a contradiction. Thus $M' = M_C$. Now we show that M is maximal in A. Let $a \notin M$. Then $(a + M, o') \neq 0$ in $(A/M)_C$ where o' denotes the zero in A/M. Since $(A/M)_C$ is a field, hence there exists $x, y \in A$ such that (a + M, o')(x + M, y + M) = (e + M, o'). Thus ((e - ax) + M, -ay + M) = (o', o'), and hence $e - ax \in M$. This concludes that M is a maximal ideal in A.

LEMMA 4. If K is a formally real field, then its complexification K_C is a field.

Proof. Clearly K_C is a commutative ring with unit (e,0). Let $(a,b)\neq 0$ in K_C ; then $a\neq 0$ or $b\neq 0$, or both $a,b\neq 0$ in K. Hence $a^2+b^2\neq 0$ in K. Clearly $(a(a^2+b^2)^{-1}, -b(a^2+b^2)^{-1}) \in K_C$ and hence $(a(a^2+b^2)^{-1}, -b(a^2+b^2)^{-1})(a,b)=(e,0)$, i.e., each nonzero element of K_C is invertible.

REMARK. In general, K_C needs not be a field even if K is a field. For instance, if K is the field of complex numbers, then K_C is not a field since the element (1,i) does not have an inverse element in K_C . Also consider the ring Z_2 , then Z_2 is a field, but the complexification $(Z_2)_C$ is not a field since (1,1) does not have an inverse element in $(Z_2)_C$. As a matter of fact $(Z_2)_C$ is not even an integral domain.

NOTATION. By Q(A) we denote the structure space of A, i.e., the maximal ideal space of A endowed with the Stone topology.

THEOREM. Let A be a weakly convex ring such that, for each maximal ideal M,

the quotient field A/M is formally real. Then $\Omega(A)$ is homemorphic to $\Omega(A_C)$.

Proof. The mapping $\theta: \Omega(A) \longrightarrow \Omega(A_C)$ defined by $\theta(M) = M_C$ is clearly one to one, and in virtue of the Lemma 3 the mapping θ is onto. To show that θ is a homeomorphism, it suffices to show that $\theta(\Omega(ab)) = \Omega_C((a, b))$ where $\Omega(a)$, $a \in A$ and $\Omega_C((a, b))$, $(a, b) \in A_C$ are the basic open sets of $\Omega(A)$ and $\Omega(A_C)$ respectively. The follows from the fact that $ab \in M$ iff $a \in M$ and $b \in M$, and iff $(a, b) \in M_C = \theta(M)$.

2. Applications. Let X denote a completely regular Hausdorff space and θ a filter base of dense subsets of X. Denote by $C_{\theta}(X)$ the ring of all complex valued functions f on X which have continuous restriction f|D to some member D of θ and by $Z_{\theta}(X)$ the ideal of $C_{\theta}(X)$ consisting of all functions f with f|D=0 for some D in θ . Put $Q_{\theta}(X) = C_{\theta}(X)/Z_{\theta}(X)$. It is known in [1] that if θ is the set of all dense open subsets of X then $Q_{\theta}(X)$ is the ring of fractions of C(X), i.e., $Q_{\theta}(X)$ is the maximal ring of quotients of C(X). The corresponding ring for the real-valued functions will be denoted by $Q_{\theta}(X,R)$, i.e., $Q_{\theta}(X,R) = C_{\theta}(X,R)/Z_{\theta}(X,R)$. It is evident that, for $u \in Q_{\theta}(X)$ with $u = f + Z_{\theta}(X)$, the mapping $u \to (Re(f) - Z_{\theta}(X,R), Im(f) - Z_{\theta}(X,R))$ is an isomorphism of $Q_{\theta}(X)$ onto $Q_{\theta}(X,R)_{C}$. Also we note that $Q_{\theta}(X,R)$ is weakly convex.

DEFINITION 2. A maximal ideal M of a ring A is said to be complex (resp. real) if the quotient field A/M is isomorphic to the field of complex (resp. real) numbers. A ring is said to be totally uncomplex (resp. totally unreal) if it does not have any complex (resp. real) ideal.

In virtue of Lemma 2 and 3, the Corollary 1 is an immediate consequence.

COROLLARY 1. If a ring A is weakly convex, then A_C is totally uncomplex iff A is totally unreal.

COROLLARY 2. If $Q_{\vartheta}(X)$ is totally uncomplex, then $\cap \vartheta = \phi$, and the converse holds, provided each member of ϑ is realcompact.

Proof. If $Q_{\theta}(X, R)$ is totally unreal, then $\cap \theta = \phi$ [6], and the converse holds if each member of θ is realcompact.

COROLLARY 3. Let X be a separable realcompact space without isolated point such that every closed subset is G_{δ} -set; then the maximal ring of quotients of C(X) is totally uncomplex.

COROLLARY 4. For a separable metric space X without isolated point, the maximal ring of quotients of C(X) is totally uncomplex.

LEMMA 5. For a filter base ϑ of dense subsets of X, the quotient field $Q_{\vartheta}(X, R)/M$ is real-closed for each maximal ideal M.

Proof. Essentially the same as in [3, Theorem 13.4].

COROLLARY 5. The structure space of the maximal ring of quotients of C(X) is the projective cover of βX .

Proof. Let ϑ be the set of all dense open subsets of X. From Lemma 5, for each maximal ideal M, $Q_{\vartheta}(X, R)/M$ is formally real. Hence from Theorem 1, we have $\Omega(Q(C(X)) \cong \Omega(Q_{\vartheta}(X)) \cong \Omega(Q_{\vartheta}(X, R)) \cong \Omega(Q(C(X, R)))$. It is proved in [5] that $\Omega(Q(C(X, R)))$ is the projective cover of βX .

Biblography

- 1. B. Banaschewski, Maximal Rings of Quotients of Semi-simple Commutative Rings. Arch. Math., 16(1965), 414-420.
- 2. N. Fine, L. Gillman and J. Lambek, Rings of Quotients of rings of Functions. McGill Univ. Press, Montreal, 1965.
- 3. L. Gillman and M. Jerison, Rings of continuous Functions. Princeton, 1960.
- 4. A.M. Gleason. Projective Topological Space. Ill. J. Math., 2(1958), 482-489.
- 5. Y.L. Park, On the Projective Cover of the Stone Čech Compactification of a Completely Regular Hausdorff Space. Can. Math. Bull. Vol. 12, No. 3, (1969), 327-331.
- 6. Y.L. Park, On Quotient-like Extensions of C(X) Can. Math. Bull. Vol. 12, No. 6, (1969).

Laurentian University