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A Note on the Complexification of a Ring

YOUNG L. PARK

1'he main objective of this note is to describe a relationship between the

structure space of a ring and the corresponding space of its complexification.

Also as byproducts it is shown that the maximal ring of quotients Q(C(X)) of the

ring C(X) of all complex-valued continuous functions on X does not have any

complex ideal if X is a separable metric space without isolated points. and the

structure space of Q(C(X)) is the projective cover (4) of the Stone-Cech compac­

tification I3X of a completely regular Hausdorff space X.

1. Cornplexification. The symbol A will be used throughout this section to

represent a commutative ring with unit e. Consider the cartesian product AXA,

and define the operation + and, on A xA by (a,b)+(c.d)=(a+c, b+d) and

(a,b).(c.d)=(ac-bd, a1+bc). Put Ac=(A XA. +.. ). Then it is readily verified that

Ac is a commutative ring with unit (e, 0) and the mapping a-- (a. 0) is an

isomorphism of A into Ac. We call the ring Ac the complexification of A. Also

it is easy to check that if I is an ideal in A then its complexification le is also

an ideal in Ac. For a subset S of Ac we put

r(S)={a€A!(a,b)€S for some b€A},
t'(S)={b€A l(a,b)€S for some a€A}.

Then clearly Se r(S)xt'(S). We prove following lemmas.

LEMMA 1. 1/ J t's an t'deal in Ac. then r(J)=t'(J) (=.I) and I is an t'deal

in A.

Proof. Let x € r(J). Then there exists x' € A such that (x, x') € J. Since e € A.

CO. e)(x.x')=(-ex'. ex) = (-x', x)€J; hence xd(J), t'. e.• r(J)Ct'(J). Also
t'(J)c;,r(J) can be shown in the same way. To show I an ideal. let x, y € I. Then

there exists x'. y' € A such that (x. x'). (y, y') € J. Hence (x+y, x' +y') € J, t'. e••

X+yE I. Since J is an ideal in Ac and (x, 0) E Ac, (x. O)(Y. y') = (xy, xy') € J; and
hence xy € I. Finally let a € A and x EI. Then there exists x' E A such that (x. x')

ET, and (a, 0) (x. x') = (ax, ax') = (ax. ax') € J. i. e., ax € I.

The proof of the following Lemma is straightforward.

LEMMA 2. For an z'deal I t'n A. (AIIk=:,AcIle.
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REMARK. We remarked that. for a subset J C Ac. J C rU) X i Cl). In general

]¥r(J)Xi(J) even though] is an ideal in Ac. For instance, consider A=Z2 and

]={(O. 0), Cl, I)}, then clearly J. is an ideal Ac. But r(j)=i(j)={O,l} and

]¥r(J)Xi(J). This means that for arbitrary ideal J in Ac there" max not exist

an ideal I in A such that ]=Ic• However, we have the following situation.

DEFINITION 1. A ring A is said to be u'eakly convex if all e+a2• a E A are

invertible in A.

LEMMA 3. Let A be a weakly convex ring. If M' is a maximal ideal in Ac,

then there exists a maximal ideal M in A such that M'=Mc•

Proof Put M=r(M'). Then M is an ideal in A. We show M is proper. Suppose
u M, then (e, b) E M' for some bE A, and hence (e(e+b2)-l, -b(e+b2)-I)(e, b)

=(e, 0) E M', a contradiction; hence e f M. Clearly M' C MxM. Take any
(a. b) E MxM. Suppose (a, b) f M'. Then there exists (x,y)E Ac such that (e, 0)­

(a, b) (x, y) E M' since (a, b)+M';£O in AclM'. Then (e- (ax-by), - (ay+bz)) EM'.

Hence e- (ax-by) E M where a, bE M and x, y € A. This implies that e E M, a

contradiction. Thus M'=Mc• Now we show that M is maximal in A. Let at M.

Then(a+M,o');£O in (A/M)c where 0' denotes the zero in A/M. Since (A/M)c

is a field, hence there exists x, yE A such that (a+M, o')(x+M, y+M) = (e+
M, 0'). Thus ((e-ax)+M, -ay+M) =(0', 0'), and hence e-a:H M. This

concludes that M is a maximal ideal in A.

LEMMA 4. 1/ K is a formally real field, then its complexification Kc is a

field.

Proof. Clearly Kc is a commutative ring with unit (e,O). Let (a. b)~O in Kc;
then a;£O or b;£O. or both a, b;£O in K. Hence a2+lP"~itf·Ii., C~y (a.(a2+b2)-I,
-b(a2+b2)-I)€Kc and hence (a(a2+b2)-I, -b(a2+b2)-I)(a,b)= (e, 0), i.e., each

nonzero element of Kc is invertible.

REMARK. In general, Kc needs not he a field even if K is a field. For instance,

if K is the field of complex numbers, then Kc is not a field since the element

C, i) does not have an inverse element in Kc. Also consider the ring Z2, then Z2

is a field, but the comp1exification (Z2)C is not a field since (1,1) does not have
an inverse element in (Z2)C. As a matter of fact (Z2)C is not even an integral
domain.

NOTATION. By D(A) we denote the structure space of A, i. e. , the maximal
ideal space of A endowed with the Stone topology.

THEOREM. Let A be a weakly convex ring such that, for each maximal ideal M,
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the quotient field AIM is formally real. Then D(A) is homemorphic to D(Ac).

Proof. The mapping (): D(A)--->D(Ac) defined by ()(M)=Mc is clearly one to

one, and in virtue of the Lemma 3 the mapping () is onto. To show that () is a

homeomorphism, it suffices to show that e(D(ab» =Qe((a, b» where D(a). a f A
and De((a, b», (a, b) f Ae are the basic open sets of D(A) and D(Ae) respecti­

vely. Ths follows from the fact that ab , M iff a f M and b , M, and iff (a, b)
f Me=()(M).

2. Applications. Let X denote a completely regular Hausdorff space and /9 a

filter base of dense subsets of X. Denote by C,,(X) the ring of all complex valued

functions f on X which have continuous restriction f: D to some member D of I'
and by Z,,(X) the ideal of C,,(X) consisting of all functions f with f:D-O for

some D in fJ. Put Q~(X)=C~(X)IZ~(X). It is known in [1] that if () is the set

of all dense open subsets of X then Q,,(X) is the ring of fractions of C(X), i. e. ,

Q,,(X) is the maximal ring of quotients of C(X). The corresponding ring for the
real-valued functions will be denoted by Q,,(X,R), i.e., Q~(X,R)=C,,(X,R)

IZ,,(X,R). It is e\'ident that, for UfQ~(X) withu-f,Zs(X), the mapping u

----.(Re(f)-ZB(X, R), Im(f)--Zs(X, R» is an isomorphism of Qs(X) onto QiI

(X, R)e, Also we note that Qs(X, R) is weakly com'ex.

DEFINITION 2. A maximal ideal M of a ring A is said to be complex (resp.

real) if the quotient field AIM is isomorphic to the field of complex (resp. real)

numbers, A ring is said to be totaly uncomplex (resp. totally unreal) if it does not

have any comPlex (resp. real) ideal.

In virtue of Lemm3. 2 anj 3, the Corollary 1 is an immediate consequence.

COROLLARY 1. If a ring A is weakly convex, then Ae is totally uncomplex iff A

is totally unreal.

COROLLARY 2. If Qs(X) is totally uncomplex, then Il f)=rp, and the converse

holds, provided each member of fJ is realcompact.

Proo/. if Qs(X, R) is totally unreal, then rl fJ=rp [6], and the converse holds

if each member of () is realcompact.

COROLLARY 3. Let X be a separable realcompact space without isolated point

such that every closed subset is Go-set; then the maximal ring of quotients of C(X)

is totally uncomp!ex.

COROLLARY 4. For a separable metric space X without isolated point. the

maximal ring of quotients of C(X) is totally uncomp/ex.
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LEMMA 5. For a filter base 1) of dense subsets of X, the quotient field Q~(X,

R)/M is real-closed for each maximal ideal M.

Proof. Essentially the same as in [3, Theorem 13.4].

COROLLARY 5. The structure space of the maximal ri'ng of quotients of C(X) is

the projective cover of fJX.

Proof. Let f) be the set of all dense open subsets of X. From Lemma 5, for

each maximal ideal M, Q~(X, R)/M is formally real. Hence from Theorem I,

we have Q(Q(C(X))-=D(Q.I)(X))-=D(Q~(X, R))-=D(Q(C(X, R))). It is proved
in [5] that DCQ(C(X, R))) is the projective cover of fJX.
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