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Linearized Ship Boundary Value Problems

by
Hun Chol Kim*
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Introduction

In dealing with theoretical ship hydrodynamics, we assume mathematically more tractable potential flow
with usual Laplace equation and boundary conditions given for the particular problem. For a completely
submerged body, the theoretical as well as a practical problem of representing a hull by an equivalent potential,
or an equivalent singulasity distribution as the potential can be so represented by a distribution of mathematical
singularities, is an essentially solved one [1). But when the free surface is involved, the problem is not only
non-linear but also the boundary conditions have to be applied on the unknown surfaces. The problem must
thereupon be solved by a perturbation technique, the first meaningful fallout of this being a linearized problem.
The perturbation technique as we now have command, however, introduces approximations on the hull
boundary condition different in nature associated with the particular problem at hand and conceivably with the
method of attack subject to the particular methematical tract being used.

T. Inui was the first to realize that there is a significant differences between the Michell approximation and
what he termed “the exact hull boundary condition,” which in the present case being Neumann ship, or one
of the different ships derivable (2, 3).

Also, the difference in choice of perturbation parameter has led J.J. Stoker to discuss three first order ship
types such as “flat ship,” “thin ship,” and “yacht type ship” [4]. The significance of such distinction was
also discussed at the International Seminar on Theoretical Wave-Resistance in Ann Arbor, 1963 [5).

The purpose of this paper is to point out more formally the differences arising from these approximations

on the hull boundary conditions, examplified by a numerical example of a completely submerged singularity
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system moving at a constant forward speed.

In the present paper, only the steady case is discussed in some detail, but the result can be in principle
extendable to motion problems as well.

Formulation of the Problem

Ty =0

We fix the coordinate system in the ship to coincide with
the free surface at rest as shown in Fig. 1, where z-axis is
toward the bow; z-axis down; and y-axis to the starboard.

¥ Ship’s constant forward speed is expressed by U in the

direction as shown.

Denote the equation of the free surface hy

Fig. 1. Coordinate System Z2(z,3,2)=0 or 2=Z(z,y) ®
and the portion of ship’s hull surface in contact with water by
H(z,y,2)=0 @

We assume Z and H are regular and has continuous first and second derivatives.

Further, we assume the flow to be inviscid and irrotational, and for the present case the fluid region extends
to infinite half-space bounded by z=0 plane at rest. Then for the fluid we take a potential whose gradient
expresses the velocity vector in the fluid:

u=p¢(z, y, 2) @
=(u, v, w)
Hence the equation of motion is the well known Laplace equation
PP$=0 (1)
The boundary conditions that must be satisfied are:
(i) Free surface condition
(i) Ship hull surface condition
(ii) Radiation condition
(iv) Sea bed condition
The radiation condition will be taken so that there will be no waves ahead of the ship at infinity and the sea
bed condition is the vanishing of normal velocity component at the sea floor, which in this case is at z—oc,
Free surface and ship hull surface conditions are discussed in the following.

Free Surface Boundary Condition

The important characteristics of the free surface is that the pressure is prescribed but the form of the surface
is not known @ priori. The boundary conditions that must be satisfied are the kinematic and the dynamic
conditions,

a. Kinematic condition

DZ _
D =0 at 2=0 5)
D Fi a 2
where i =05, +¢y"a—y‘+¢.- e
Therefore,
(¢Z‘U)Zx+¢yz_y_¢j:0 at z=Z7 (6>

Where §=¢—Ux. @ is the potential referred to a stationary coordinate system fixed in space and ¢ is that
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referred to the moving coordinate system fixed on the ship.
b. Dynamic condition

This is the Bernoulli’s equation with the static pressure on the surface set equal to zero.

@ +0240.0) +gz= L1 )
or -—U¢z+—%—q2+gZ=0 on z=2Z 7’
where ?=u?+v+w?
:¢xz+¢y2+¢:2

The above exact conditions, (6) and (7), are difficalt to apply not only because the equation of the free
surface is unknown but also the dynamic condition is non-linear and hence a superposition of soulution is not
permitted. One of the favored techniques for attacking such a problem is by a formal development of hull
equation, free, surface equation, potential, etc,, in series with respect to “a small parameter,” assuming the
series converge.'® This procedure for linearizing a non-linear problem is mathematically consistent and it gives
means for determining any desired higher order corrections provided the “right parameter”® is chosen. This
scheme, known as perturbation procedure or perturbation technique, will be used in the following for the two
boundary conditions to correctly place the meaning of a study of the ship boundary value problems involving
the free surface.

¢. Perturbation

Assume henceforth that the velocity potential and the free surface equation possess the power series expansion

is terms of a small parameter g as follows:

Bz, 3, D)=V (z, 3, 2)+ 4P (3, 3, D)+ ®)
z=Z(x, y)=Z9 (z, y)+ZV (z, y) + B2 (x, y) + o 9

Also
P =0 (n=1,2,3, - ) (10)

The dynamic condition Eq. (7)’ becomes:
— U(B¢x(1) +.52¢x(2) +%[(ﬁ¢x(1) +ﬁ¢x(2) + ...)2+ (ﬂ(ﬁy“) ,}_5295’(2) + ...)2
+ (1395‘(1) +f92¢l 2} + )2] +g(Z“” +ﬁZ(“ ,}_ﬂzzm 4 ) =0

at 2=Z0 4 BZV 4 G2 4.
Collecting terms of the same order with respect to 8,
For g% gZ©@=Q at 2=2Z?, but Z9=0 an
For g: ~Ug:'V(x, v, BZV)+gZ'V =0 Q2)
at z=gzZw

For g% -

Note that the equation (12) collected in terms of order of g is to be satisfied at z=Z'?, since Z''=0(¢'V]
and the dimensional homogenuity must be observed.

Hence —Ug:V(z, y, 0)+gZV=0 at 2=0 azy’
The kinematic condition Eq. (6) becomes:

1 1.7, Stoker, Water Waves (New York: Interscience, 1957), p. 19 and p. 269.

(@ Mathematically, the parameter needs only to be small compared to another number of unity. Its inter
pretation in terms of a physical parameter is arbitrary. Professor Stoker interprets the term as “thick-
ness-length ratio or draft-length ratio.” In general it is considered to be the ratio of the wave height
to the wave length,
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(ﬂ¢x(“+ﬁ2¢x(2)+""")(Zx(m+ﬂme+ﬂZme+ ...... )

—U(Z O+ BZ 0 f 22,2 o) - (Bhy D - B2y 1D + ) (2,0 + BZ, 1 - B2Z,1D  -o-)

—-(ﬁ¢z‘1’+ﬂ2¢,(2)+"""):0 at z-_—Z(o’—{-ﬂlZ”’—f—ﬂzZ‘z’-l-"- (13)

Collecting terms of the same order with respect to 8 in the same manner as before,

£ —UZ 9= at 2=2Z,=0 10
or Z;'9=0 4’

Bl . VZ 0 —UZW 4 g, WZ0 gDz y 0)=0 (15)
at z=Zy=0

J:i

Eliminating the unknown surface Z; between Egs. (12)’ and (15), where higher order terms like ¢, Z,©@

and ¢, Z,© are ignored we get a steady state free surface boundary condition:

_U2¢n(1) _g¢=(1):0 at z=0 (16)
or ¢t Kop.=0 at z=0 an
Ko=g/U?

The equation (17) is the linearized boundary conditions on the free surface. Equations (11) and (14)’
signifies a rigid wall at the free surface and a double model. In terms of the perturbation procedure, the above
shows that the linearized problem is of order one in 3, whereas the Neumann problem is of the lower order
(s8°1.

A physical interpretation of the sequential application of the perturbation procedure can be understood as a
formal application of step-by-step corrections to the approximate initial solution, and therefore, it suggests
reasonableness in assuming that the first term involving 8° is greater than the second involving g, the second
greater than the third and so forth.

The free surface boundary condition in (17) is linearized under the assumption that, according to the
interpretation of Levi-Civita'® and Struik!®, the amplitudes of the surface waves to be small compared to
their wave lengths. This is interpreted to require at once that the ship must have a shape of thin disk or
needle so that for a translational problem it can have a finite forward speed and still create a small disturbance

or the forward speed itself must be approaching zero so that the free surface becomes a rigid wall.

Hull Boundary Condition

The hull surface boundary (2) is expressed as

H(I, ¥, z)Ey_hCI: Z):O (18)
The kinematic condition is
DH
'Dt’ =0 on H:() (19)
of —~@hit+Py—0rh,  at y=h(z, 2) (20)
or _¢x'hx+¢y_‘¢z'h1=_Uhx at y:h (21)

This is exact linear condition, and we shall call the ship satisfied by (21) a “Neumann Ship.”
If now f is taken to be the beam-length ratio (B/L), where B is the total beam and L the half-length of
the ship, the disturbance disappears as 80, and it satisfies the assumptions of the finite forward speed and

the small wave amplitudes.

9, @ J.J. Stoker, op. cit., p. 17 (secondary source)
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Let H(z,y,2)=y—h(z, 2)=y—phV—ph'T —eree=( 22)
where  y=gh(x, 2)+phP +eeuer is half-breadth of the ship, and g is small.
Since  $=pgV B +oerenr,
B! order term by a similar method becomes:
S,V =—Uhl  at y=hW 23
This is the “Thin Ship” approximation. Here %,V and %;'V are assumed to be of the same order as AV (xz,2),
but this assumption is artificial and will have to be violated when applied to ordinary ship forms.
For a distribution of singularities on the longitudinal centerplane of a ship expressed as ¢(x,z), we have the
following:'®
:_Ls‘ j’ 0% 0dedl
el O R Sl ok

t (12 =02 pt Kasectd ) )
+]17; g_,g_,«r(é, O { PV 50 So ’ki;K:’gEz'a' expl —k(z+{) —ik[ (x —{)cosf+ysind|dodk

+4K, j :exp[-—Kosec20 (2487 cos(Ksec?d y sind)sin[ Kosec+ (z—§&)]d8 } ded  (24)

where —L<—I<¢<I<L
—H<L—t<0<t<H
2L: length of the ship
H: draft of the ship
20: length of the singularity distribution plane; 2{%2L.
t: depth of the distribution plane from the free surface
z: positive down:
$y=v= _Tglﬂvy S ‘_, S ’_[’[f(_?r"_ggiy?fség_’oz]s/z
B P P e aa
exp[—k(z+C) —ik[(z—&)cos 8+ ysin 8] d0dk

+4K? f :—exp[—Ko(z -+{)sec?d] sec?d sind sin (Ko sec?d y sind)sin[ Kosect (x— &) ]d8 } dsdg (25)

Substituting the above into Eq. (23),
—Uh:'V'=[Eq.(25)] (26)
Equation (26) is a Fredholm integral equation of the first kind in o(z, 2) for a given thin ship (to the
order p1). The kernel of the equation is very complex but well behaved.
In the absence of the free surface terms, we have:

5‘43“ a(e, £)ded; 4=U

TGO R G + GO0 = h(zn) M) @)
It has often been said that a linearized theory to the order of 8! gives a Michell ship, where 8! is the

beam-length ratio, but it can be shown that there is distinction. To show such a distinction, we take a sing-
ularity distribution ¢(z, », ) on S surface and evaluate the y-component of velocity at a point (z, y, 2) on
S. In general we have then

1 a (&, », D) dgdyd]
e R I (e e ey e @8)

Particularly at y=0 and for the centerplane distribution,

(® For example, see J.K. Lunde, “On the Linearized Theory of Wave Resistance for Displacement Ships
in Steady and Accelerated Motion,” Transactions of SNAME, Vol. 59 (1951), p. 29, Eq. (3.20).
To this the last term will be added to make the potential unique.
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., 1 d o(§, §)dédy
== e =y |t 29
evaluated at y=0

Since the last term vanishes at y=0,

v:%a(z,z)‘“’ (30)
Using this, we have from Eq. (23),

%a(x, z2)=—Uhk: at y=0 3D
or o(z, 2)=—2Uh(z, 2) at y=0 (32)

Equation (32) is the Michell approximation to the hull boundary condition, which even in the absence of the
free surface effect, is clearly different from that of the first order thin ship, Eq. (27). As in the first order
thin ship, when §—0, the “Michell Ship” disappears altogether, and it is of order g!, The important fact is
that the Michell approximation is derived only from the principal value right at the source and at the center-
plane. It is a useful approximation to the solution of the integral equation, Eq. (27).

In the slender ship theory, the Laplace equation is assumed to take the following form right near the hull.'”

a? % a°
o= “5;2* o 0 where ;3}?2" =0 (33)

This means that the flow is two-dimensional on y-~z plane and #=¢, is independent function of x near the

hull. This can be met if h; is very small, and thus we can derive the “Slender Ship” theory as
dy—phe=—Uh; at y=h (34)

For a given form of singularity distribution, this becomes the slender ship approximation in a form of the

integral equation of the first kind.

The thin ship and the slender ship approximations as originally conceptualized include the effect of free
surface, but because the expressions are difficult to calculate, the whole expressions are seldom used. It is
customary to neglect the free surface terms as we have done in the above, that is, Eq. (27) was used where
Eq. (26) should have been, and the effect of free surface is added after the singularity distribution is found.
The last process is really an indirect method. It can be used for all four cases, that is, Neumann, slender ship,
thin ship and the Michell ship. The disadvantage of this lies in the fact that the hull form given by the
singularity distribution so found depends on the speed, and hence there are infinitely many corresponding
geometrical models. In order to avoid this, a complete expression such as Eq. (26) must be used, and consequently
we now have only one model, but an infinite number of equivalent singularity distributions corresponding to it.
It is undoubtedly the method which gives a single geometrical model that is consistent in theoretical foundations
but more difficult to deal that we have to choose eventually.

The original Michell approximation does not contain the effect of the free surface. But, the free surface

® Also from the Gauss flux theorem, the normal component of velocity at the source (z,y,z) due to a
source distribution ¢’(x,y,2) in the absence of free surface is given by

4no’ (z,y,2) ds=2vds
or v=2x0'(1,9,2).
The original Michell approximation is to be satisfied at y=0,
or v=2r0'(z,2), but a’(x,z):wl%_;—a(;t, z) here.

" Hajime Maruo, “Calculation of the Wave Resistance of Ships, the Draught of Which is As Small As
the Beam,” Transactions of Society of Naval Architects of Japan, Vol. 112 (1962), pp. 21-37.
More elegant treatment of this can be found in T. F. Ogilvie and E. O. Tuck, A Rational Strip
Theory of Ship Motions, Part 1. The Univetsity of Michigan, Department of Naval Architecture,
Pub. No. 013 (March, 1969). '
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effect can be added to generate a different singularity distribution as in the following. For a three-dimensional
case, using the linearized total potential for a source distribution ¢(x,z), and using Eq. (23) at y=0,

1 1 ¢ © k4 K ,sec?f .
z'a(z,z)+“4;‘ j L V I [P.V. ]_Y o F—K. ::(?20 (-—iksin 8)

e—k(:+§)—ik(x—flcosﬁdﬁdkd{;d&z — U}Ix(.l‘,.Z) ,y=0 (35)
This is an integral equation of the second kind, which has a unique solution. Similarly, the formulae for the

Neumann problem and the slender ship may be written down including the effect of the free surface.
Comparative Studies

Regarding all of the cases above, we can make up the following table (Table 1), where the expressions of
the potentials for a source distribution of ¢(x,0,2) type

. L 080 dsd
e P=4n ) [ G

¢'=[Eq - 2]
¢""=[Eq + (24) with 0o(x,2) (known) instead of a(x,2)].
For a given hull, how well each of these cases will compare with onc another is not known at this time.
Certainly they present an interesting item to study. We might add that cight of these cases can be studied by
the simpler indirect method, and that a comparison betwcen the the Michell ship and the ship given by the

Table 1. 12 Cases of Comparative Studies

i Neumanr. Ship i qlender thp i 'Imn Shlp ‘ Michell Ship
Without Free Surface| -—¢zhs+¢y } ¢y = | -—lzgo(x’z):_ Uk,
. : _ 7 by=— Uh, | 2
8% o0(z,2) geho=—Uhs | —gehi=— ’ | @ =0
With Free Surface | —¢’:hst-¢’ : ¢’ a D¢ y=—Uhs
(Direct) 8% o1(z,2) | — @' ha= — Uhy — ¢ che=  Uh, ¢'s=—Uh: é y=0
With Free Surfacea | —¢"'zh:+¢"'y &'y ’,:~ Uh,
(Indirect) i " y=—Uh,
ﬁl;do(l',y)’f"“ _‘¢”zhz:_U}lx ' _¢ rha=—Uhy @ y=0
Corresponding dx _dy dz_ \ © dx dy
Streamline u—U" v~ w ‘ ~7x—:—4‘2~:~@a dx :_dy_ VT T 1
| Equation u=p l —-U v w -U v ~7¢70(1:, z)
i

a Expressions are similar to those of direct method except the free surface effect is added after the
corresponding singularity distribution in the absence of free surface is found.

Neumann problem for a simple given source distribution was made by T. Inui.® Indirect solutions are relatively
easy to obtain and one such comparison is given in the following.

In order to show the distinction among the boundary conditions, we employ in the following an indirect
method using a very simple source distribution in two-dimensions.

Take a simple source distribution corresponding to T. Inui’s S-series,’® i.e.

(&) =at, —I<e<]; I=L (36)

in a uniform flow.

We have then:

1) For the Michell ship (two dimensional) in the absence of free surface terms:

® T.Inui “Study on Wave-Making Resistance of Ships,” 60th Anniversary Volumes, Society of Naval
Architects of Japan, vol. 2, 1957, p. 173.
® Inui’s S-series is a three-dimensional case. Eq. (36) is a two-dmiensional case.
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o(x)=az=- ZU%;—C)-

h(x)=— *4%* x%-constant.
with A(z)=0 at z=+L and —L,

hz)y=g (L=

2) For the thin ship (two-dimensional) in the absence of free surface terms:

v _dy
T U T dx
! £t
where y=h(z), v= —4y7 j e f(;:%jur‘yzj's/z'
or
[T S
- @— R (@) — k() dx

where now Ah(z) is the unknown to be found.

The integration with respect to & can be carried out explicitly [6].

3) For the Neumann ship (two-dimensional) in the absence of free surface terms:

v _dy.

u—U = dzx

b add

-t [((x—8&)2+y%)372
alz—8&)¢de

=1 j’ -98dE
“ETar ) a9y

R
where v= ir j
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Also the integration can be carried out explicitly (6). Result of numerical intergrations for Egs. (41) and (42)
are shown in Fig. 2, and Table 2 together with that of the Michell ship.

The figure is self-explanatory. The maximum difference in beam is approximately 5—8% depending on the
“Ships” when L/B=10.0. There is some diffence in half angle of entrance. Since the wave resistance is
proportional to B2, the difference in resistance must be more pronounced, say 10—15%.

We must, moreover, note that at a finite forward speed the Michell ship and the thin ship are assumed to
have small amplitude waves according to the “linearization” based on the perturbation procedure, but that no
such statement can be made for the Neumann ship. As can be seen in the figure, the Neumann ship fall in
between the Michell ship and the thin ship with respect to the beam in the absence of free surface terms.
Since it is not expected that the relationship of Fig. 2 will be greatly altered by the introduction of the free
surface terms, we are led to believe that the waves created by the Neumann ship must also be smz!l to the
order of gl

In a three-dimensional case, the ship given by the Neumann problem may actually have a smaller beam
than any other approximations. For a singularity distribution of S-101 type (2=0.4; depth of singularity
distribution: 2=0.1), the maximum bcams of the thin ship, slender ship and the Neumann ship will not
only be greatly reduced in general but also the difference among them will become smaller. The beam of the

Michell ship, of course, does not vary from a two-dimensional case to a three-dimensional case.

Table 2. Comparison Among Michell Ship, Thin Ship and a Neumann Ship Using Simple Distribution.

z MICHELL NEUMANN THINe
1.00 0 . 0002 . 0002
.90 .0190 .0164 .0184
.80 . 0360 . 0324 .0343
.70 .0510 . 0466 .0482
.60 . 0640 . 0592 . 0601
.50 . 0750 . 0699 .0701
.40 .0841 .0788 .0782
.30 .0910 . 0858 . 0846
.20 . 0960 .0910 . 0892
.10 .0990 . 0942 .0921
0 . 1000 . 0955 .0932
s The same computer program was used throughout.
Conclusion

A formal treatment of linearized ship boundary value problems yields “Neumann Ship,” “ Slender Ship,”
“Thin Ship,” and “Michell Ship,” as defined in the text. The distinction presents an interesting comparison.
A numerical study of hull forms given by a two dimensional simple source distribution indicates characteres-
tically different hull forms. The miximum difference in maximum beam amounts to approximately 8%. A

comparative study for a three dimensional case is in order.
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