A CLASS OF MULTI-VALUED FUNCTIONS

By J.T. Borrego

Let $e: X \times Y \to Z$ be a continuous function. If X, Y, Z are compact and Hausdorff, then the multi-valued function $F: Y \to Z$ defined by $F(y) = e(X \times \{y\})$ for $y \in Y$ is continuous [3]. The purpose of this note is to give necessary and

sufficient conditions for a multi-valued function to be represented in such a fashion.

NOTATION: The topological closure of A is A^* and \Box is the empty set. Let F be a relation between Y and Z. If $y \in Y$, then $F(y) = \{z \in Z \mid (y, z) \in F\}$. If R is a subset of Z, then $F^{(-1)}(R) = \{y \in Y \mid F(y) \cap R \neq \Box\}$ and $F^{[-1]}(R) = \{y \in Y \mid F(y) \subset R\}$. We shall follow the terminology of [1].

A multi-valued function $F: Y \rightarrow Z$ is a relation F between Y and Z such that F(y) is not empty for all $y \in Y$. F is continuous if and only if (i) F(y) is closed for all $y \in Y$ and (ii) if U is an open subset of Z, then $F^{(-1)}(U)$ and $F^{[-1]}(U)$ are open in Y. A trace of F is a continuous single-valued function f: $Y \rightarrow Z$ such that $f(y) \in F(y)$ for all $y \in Y$. A subfunction G of F is a continuous multi-valued function $G: Y \rightarrow Z$ such that $G(y) \subset F(y)$ for all $y \in Y$. For more complete treatments of relation theory the reader is referred to [2] and [4].

THEOREM. Let Y and Z be compact, Hausdorff spaces and let $F: Y \rightarrow Z$ be a continuous multi-valued function. Then there exists a compact, Hausdorff space X and a continuous function $e: X \times X \rightarrow Z$ such that $e(X \times \{y\}) = F(y)$ for all $y \in Y$ if and only if there is a family T of traces of F satisfying: (1) If $y \in Y$ and $z \in F(y)$, then there is an $f \in T$ such that f(y) = z. (2) T is closed in C where C is the set of all continuous functions from Y to Z with the compact-open topology.

(3) For every closed finite cover \mathscr{M} of Z and for every $y \in Y$, there is a family $\{G_{M_{y}} | y \in F^{(-1)}(M), M \in \mathscr{M}\}$ of subfunction of f such that $G_{M_{y}}(y) = M \cap F(y)$ and every $f \in T$ is a trace of some $G_{M_{y}}$.

PROOF. First we suppose that such an e and X exist. Define $g: X \to C$ by g(x)=f if and only if e(x,y)=f(y). Using the compact-open topology on C, it is easily shown that g is continuous. Thus if we let T=g(X), then (1) and (2) are clear.

18 J. T. Borrego

Let \mathscr{M} be a closed cover of Z and $y \in Y$. If $M \in \mathscr{M}$ and $y \in F^{(-1)}(M)$, then let $A_M = \{x | e(x, y) \in M\}$. Since A_M is closed, the function $G_{My}: Y \to Z$ defined by $G_{My}(y') = e(A_M \times \{y'\})$ is continuous and a subfunction of F with $G_{My}(y)$ $= F(y) \cap M$. If $f \in T$, then there is $x \in X$ and $M \in \mathscr{M}$ such that g(x) = fand $f(g) \in M$. It follows that $x \in A_M$ so that f is a trace of G_{My} . Next, we shall assume that a family T of traces of F satisfy (1), (2), and (3). Consider T as a subspace of C. Then $e: T \times Y \to Z$, which is defined by

e(f, y) = f(y), is coninouus and from (1) it follows that $e(T \times \{y\}) = F(y)$ for all $y \in Y$. It remains only to show that T is compact. Since by (2) T is a closed subspace of C, if T is equicontinuous, then it follows from the Ascoli Theorem ([1]; Theorem 17, pp. 233-234) that T is compact. Thus, to complete the proof of the theorem, it suffices to show T is equicontinuous.

Let \mathscr{V} be a finite open cover of Z. Let \mathscr{M} be a finite closed cover of Z, which refines \mathscr{V} , and fix $y \in Y$. Let $\{G_{My} | y \in F^{(-1)}(M)\}$ be a family of subfunctions of F given by (3). Let $U = \bigcap \{G_{My}^{[-1]}(V) | V \in \mathscr{V}, \text{ there is } M \in \mathscr{M} \text{ with}$ $y \in F^{(-1)}(M) \text{ and } M \subset V\}$. Thus U is an open neighborhood of y. Let $f \in T$, then there is $M \in \mathscr{M}$ and $V \in \mathscr{V}$ such that f is a trace of G_{My} and $M \subset V$. Thus, $f(u) \subset V$ since $y' \in U$ implies $y' \in G_{My}^{[-1]}(V)$ and $f(y') \in G_{My}(y') \subset V$.

> University of Massachusetts Amherst, Massachusetts U. S. A.

× .

+ Y

REFERENCES

- [1] J.L. Kelley, General topology, Van Nostrand, Princeton, 1955.
- [2] W. L. Strother, Continuous multi-valued functions, Bol. Soc. Math. São Paulo, 10 (1958), pp.87-120.
- [3] A.D. Wallace, Relative ideals in semigroups I, Colloq. Math. 9 (1962), pp.55-61.
 [4] A.D. Wallace, Lectures on relation theory, University of Florida, 1964 (notes by S. Lin).