HILBERT TRANSFORM IN SPACES 4 AND M
By H. P. Heinig

1. Introduction.

Let f be a measurable function defined on some measure spac: 5 Wit
measure # and f* the non-increasing equimeasurable rearrangement of f onto
(0,0). (For definitions of these concepts see e.g. [2]). The spaces A(e, p),

>0, M(e,p), 0=ex<1, 1=<p<oo are defined to consist of those measurable
functions f on S for which the respective norms given by

1l s, =10 [29 72 @))P ax V2
0

and

| £,y =Sup Im(ED) ~% [1£() 1 Pax P, m(E) <oo,
E

ECS

are finite.

For 0<ax=1, A(et,p) and M(e,p) are Banach spaces and for =1, l| fl| Aat, »)
=[|fll,, where the last norm is that of the usual Lebesgue spaces L,

It is well known (see e.g. [4]) that if feL, (—oo,0), 1=p<oo, then f
the Hilbert transform of f:

Fostip - [
t—x|>e

exists a.e. and for 1<p <o, llfllpﬂ AL,

In this note we extend the previous result to functions in A(e,p) and M (¢, p.
Also, extending the definition of the Hilbert transform to certain singular
integrals in E”, similar results are obtained.

Throughout, A denotes a constant independent of f not necessarily the same
each time.

In the sequel f** denotes the integral mean of f*, that is

(D) == [ frwoat, £>0.
O

The following result due to R. O’Neil and G. Weiss [2] will be used f{re-
quently.
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THEOREM 1. If

f %) sinh“'l(—g—-)dz<m
0
then f exists a.e. and for each s>0

B -1 25 [ ()
s F¥(s)=-—=- ff*(z‘) sinh \-—) dt= Jo (32+10) 172 di.

A result similar to Theorem 1, with f is replaced by a singular integral
operator in E” is given in the same paper [2]. This result will be used for
the operators considered in § 3.

2. Main Results

THEOREM 2. If f e A(e,p), 1<p<o, 0<x<p, and q end B satisfy fp=uayq,
cc<QB, then f exists a.e. end

(2) ”f”A(ﬁ,q)“—iA”f“A(a.p)'

PROOF. Let p+p’=pp” then Holder’s inequality and a special case of
[3, Theorem 2] yields

QO

, @) [ m(l'- )/ (p—1) 2N—p’/2 g \1/p"
a{ (L+%172 dt=<|lf** 4a, p)ldf A 1+ dt}

K 0O
- fwf 1 e, ) {ft(l—ﬂ)/@—l)dt_|_ft(l—ﬂ’)/(ﬁ’—l)*P’dt}lfp' < oo,
0O

The interchange of integration above is justified by Fubini’s theorem, so that
by Theorem 1, f. exists a.e.. From (1) we have the obvious inequality
f*(s)<f**(s), s>0, and by Theorem 1

OO

s, =18 (701 as}Ve<{ B P-4 o1 s e
0

o0

fﬁ lds[-——— f*(¢) sinh™ (f)dz‘]q}l/‘?

=( “2{ }{Bf[ {f*(t) fo:x—-1)/p][S(ﬁ-—l)/q—ltcl—m/psinh—l( _i__ )dt]qu}l/q

0

Applying [1, Theorem 1] with r=¢q and v=(8—1)/9+ (1 —a)/p we obtain (2).
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THEOREM 8. If fe A(et,1), 0<ax <1, then f exists a.e. and
”.7”,4@} I)EAHf”A(m 1)

PROOQOF. Since

o0

o0 4
O X R S PVWR
) (141912 at { t(1+z2)1/2[f (s)ds

OO

1—-<:r
—1 dt
._f 24 f*(s d-’ff H1t t2)1/2

< oo,

{Hf”/l(cr l)f Z.o:(l_{_tZ)l/Z

the existence of f a.e. follows from Theorem 1. Also

o0 o0

I llgca, 1) ﬂ{afs“_lf**(s)ds}1 27?'_fs““zdsff*(t)sinh"l(—zl"g—-)dt

0 0

*"asz*(z‘)dt{ 2f“ 2sinh ~ (s \ds}

2 h~
=”f”,1( *{-E-f sz —p du}

0
=A|lf|]A(a, 1,
rhich proves the result.

For the spaces M(¢,p) we have the following:
THEOREM 4. If fe M(e, p),0<a<7}-, 1<p<oo, then f exists a.e. and

”-?”M(a.p) 5A'|f”M(a,p)_
PROOF. The proof of [3. Theorem 3] shows that

r F*()dt . 12— 1/b gy oo
A (1+t2)1/ —lf”M(ap)f (142 2)1/2<

Therefore, by Theorem 1, f exists, a.e.

Now let £ C S such that m(E)=n<oo. Since f*(s)=<f**(s),
7

= [1f) 1 Pax o<y f SO e AR A I o
T 0

0

and by Theorem 1 and [3, Ttejrem 3]
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<2 fly n—ﬂ{j’dx[f_ il at ol
7 (o, p) oL (5241212 i
" o0

=-%“f”y(a,p)ﬁ_a{{xap—ldx[ug ?:;Zzp;if}z ]P}l/ﬂ

which proves the theorem.

COROLLARY. If fe M(x, p), 0<et, pa#l,1<p<oo, then f(x) exists a.e.,
and

PROOF. For af>—j1)—, M(ee,p) is void ([3, Theorem]) and the corollary reduces

to Theorem 3.

3. Generalization.

Let X,Y,...denote the points (%1, %9, «+¢5%,), (P52 oeus ynj, ... 0f Euclidean
n-space E”, and X’,Y’,... be the points of the surface of the unit sphere Y
of E”. That is Y'=Y/1Y| where (Y] =(y?—l—... -+ yi)” ., The volume, respec-

tively, surface element in E” and ¥ is denoted by dY and 4Y’. We define f,
the singular integral operator with odd kernel by

Fo=lim [ L2 rx-vay
e 1T

where (2 satisfies
(1) Q)=7")
() QYN=—Q(-Y’) forall Y’ eX

i) Q] = f QY)Y oo,

g ‘

It is known [5] that f(X) exists when fe LP(E”), 1 <p <o and llfllpﬁﬂpllfl[p.

Considering now the spaces A(e,p) and M(et,p) corresponding to functions

in E” we obtain with the aid of the theorem [2] analogous to Theorem 1 the
following.

THEOREM 5. If fe A(e,p), 1<p<oo, 1<t <p and rx and B satisfy Bp=cyq,
o</ then f exists a.e. and

1F g, o <A 4o, -
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PROOF. By [2, Theorem 2]

O

1 £ e, py =10 77 17%Co) [Pas }e

0

OO

(e 1] prexce) as)

0
guQu{afsﬂ-lds[%?f*(t)sinh—l(_g.)dz]P}lfﬁ.

Using the result of Okikiolu [1, Theorem 1], the result is obtained as In
the proof of Theorem 2. The result corresponding to the Theorem 4 is :

THEOREM 6. If fe M(a.p), 0<a <—;— <1 then F exists a.e. and

17 Matce, 5y <A1 1, -

The proof follows along the lines of that of Theorem 4.
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