ON SYMMETRIC GENERALIZED UNIFORM SPACES

By C.J. Mozzochi

In this paper we provide answers to four questions raised by the author in [1].

 (Q_1) Does every symmetric generalized uniform space have an open base? No.

 (Q_2) Does there exist a symmetric generalized uniform space which has a convergent filter which is not Cauchy? Yes.

 (Q_3) Is there a proximity class of symmetric generalized uniformities with more than two totally bounded elements? Yes.

 (Q_d) Does there exist a totally bounded uniformity which is not p-correct or *p*-correct of degree *n*? Yes.

Let R denote the reals, let I denote the positive integers. Let $\Delta = \{(x, y) \mid x \in X\}$ $x = y \in R$. Let $\Delta^* = \{(x, y) | x = -y \in R\}$. Let $I_n = [-1/n, 1/n]$ for each $n \in I$. Let $B_n = ((I_n \times I_n) - \Delta^*) \cup \Delta$ for each $n \in I$. Let $\mathcal{B} = \{B_n \mid n \in I\}$.

THEOREM. *It is a base for a symmetric generalized uniformity U on R that* has the following properties:

(1) For every U, V in $\mathcal{U}(U \cap V) \in \mathcal{U}$.

(2) (0,0) $\notin B_n^0$ for every $n \in I$; so that \mathcal{U} does not have an open base, and \mathcal{U} is not p-correct.

(3) $(B_n \circ B_n) \cap ((R \times R) - B_m) \neq \phi$ for every m, n in I.

(4) The neighborhood system of 0 is a convergent filter in $(R, \mathcal{T}(\mathcal{U}))$ that is not Cauchy with respect to U.

(5) (R, \mathcal{U}) is complete.

(6) $\mathcal{T}(\mathcal{U})$ is not compact; so that \mathcal{U} is not totally bounded.

PROOF. The proof that \mathscr{B} is a base for a symmetric generalized uniformity on R is straightfoward, for suppose $b \in B_n[A] \cup B$. If $b \neq 0$, then there exists $m \in I$ such that $B_m[b] = b$ (choose m such that 1/m < |b|). If b=0 then there exists $a_n \in A \cap [-1/n, 1/n]$ such that $(a_n, 0) \in B_n$. If $a_n = 0$, then $B_n[0] \subset B_n[A]$. If $a_n \neq 0$, then for any $m \in I$ such that $1/m < |a_n|$ we have that B_m [0] $\subset B_n$ [A].

42 C.J. Mozzochi

PROOF 1. $(B_n \cap B_m) = B_m$ if $m \ge n$.

PROOF 2. $(0_1 \times 0_2) \cap (\angle^{*}(0,0)) \neq \phi$ for every $0_1, 0_2$ in $\mathscr{N}(0)$, the neighborhood system of 0.

PROOF 3. $(B_n \circ B_n) \cap (\Delta^* - (0, 0)) \neq \phi$ for every $n \in I$.

PROOF 4. Same as proof of 2.

PROOF 5. Let \mathscr{F} be a weakly Cauchy filter in $(R, \mathscr{F}(\mathscr{U}))$.

For every $n \in I$ there exists $x_n \in R$ such that $B_n(x_n) \in \mathcal{F}$. Suppose for some $m \in I$ $x_m \in (X-[-1/m, 1/m])$. Then $\mathcal{F} \supset \mathcal{N}(x_m)$, the neighborhood system of x_m . Suppose for every $n \in I$ we have that $-1/n \leq x_n \leq 1/n$. Then 0 is a cluster point for \mathcal{F} . PROOF 6. $\{x\}$ is open if $x \neq 0$, and for each $n \in I(-1/n, 1/n)$ is an open neighborhood of 0.

By a suitable modification of the above construction it is possible to prove the following

THEOREM. There exists a symmetric generalized uniformity \mathcal{U} on R without an open base that generates the usual topology for R such that for every U, Vin $\mathcal{U}(U \cap V) \in \mathcal{U}$.

THEOREM. There exists a totally bounded symmetric generalized uniform space that is not p-correct or p-correct of degree n for every $n \in I$.

Trinity College

Hartford, Connecticut U. S. A.

RFFERENCES

[1] C.J. Mozzochi, Symmetric generalized uniform and proximity spaces, a publication of the Department of Mathematics, Trinity College, Hartford, Connecticut, October 1968.