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1. It is well known that the rank of the product of t휴o matrices cannot 
exceed the rank of either factor. The natura1 question can be raised: What 
is the rank of th product of two matrices? We shall give an answer to 
this question in Theorem 1 and we shall have an application of this Theorem 1. 

2. Let F be a fie1d, and V(F)=V a vector space over F. Let L(V) be the 

mu1tiplicative semigroup of all linear transformations of V. With each e1e­
피ent A of L(V) we associate two subspaces of V: 

(1) the range space R(A) of A , consisting of all xA with X in V , 

(2) the null space N(A) of A , consisting of all y in V such that yA=O. 

p(A) denotes the rank of the linear transformation A. 

THEOREM 1. 11 A and B are two linear tγanslormations 01 a linite d쩌e%si0% 

al vector space V(F). then p(AB)=p(A)-dim(R(A) nN(B)). 

PROOF. Let dim V(F)=n. Let {z;:i=1.2 •..•• m} be a basis for the null space 
N(A). We can supplement this basis by n-m vectors 샌: i=1.2, .. , n-m} to 

obtain the basis X1• X2 ••• , Xn- m' Zl' Z2' •• ' Zm for V(F). The vectors x1A , x2A , .. 

• Xn_mA, zlA. z2A, ..• zmA are generators for the range space R(A). Since 

zjA=O (2"=1.2, .. , m) , vectors x1A , x2A, ..• Xn_mA are a1so generators for 

R(A). 

These vectors are linearly independent. If c1 (x1A) + c2(x2A) 十… +cn-m(xn-mA) 

=0 for ci E F. then (I:?': icjxt)A= 0 and I:i:I"cjxj E N(A). Since the set {xl' x2 

, ..• Xn_ W Zl' Z2' •• ' zm} is an independent set. this implies that cj are all o. 
Hence if we-set y,=xtA (t=1, 2, •.. , %-m) {y‘: i=1. 2, ...• n-m} is a basis for 

R(A). Let [Yl' Y2' •• 'Yk1 denote the subspace of the vector space V(F) generated 

by the vectors Yj (2"= 1, 2, ... , k). Then R(A) = [Yl' Y2' ••• , Y'I-m1 and hence 

there is a set {yι : j=1, 2, .. , k} of vectors in the set {껴 : z.=1.2, .. , n-m} such 

that {Yi
l 

: {=1 , 2 ••• , k} is a basis for the space R(A)nN(B). Without 10ss of 

generality. ￦e mày assume. that R(A)nN(B)= [Yl' Y2' •• 'Yk1 and k드n-m. 

Then {y;B: i=k+1, k+2, ..• n-m} is an independent set. To see this, assume 
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that Ck+ l(Yk+ 1B) 十Ck+2(Yk+ 2B) + … +C←mc.~’←mB)=O. Then μ= L:仁값lCiYi 

fR(A) nN(B) and hence we have the following expression μ=C1Yl+ C2Y2+ ••• 

+CkY
k 

for some cj f F , (i= l, 2, .. , k). Since the set {낀 : z.= 1,2, .. , n m} is a linear­

ly i.ndependent set, this implies that cj=O (i=k+1, k+2, .. , n-m). Thus {YjB 

: i=k+1, k+2, .. , n-m} are linearly independent vectors. Now we see that 

p(AB) =dim [YIB， y~， .. ,yn-mB] =dim [Yk+ 1B'Yk+ 2B, ... ,Y• mB ] 

=n m k=p(A) dim(R(A) nN(B)). This proves the theorem. 

3. We shall have a trivial aþplication of Theorem 1 in semigroups. Let S 

be a semigroup. We define aLb (a, b f S) to mean that a and b generate the 

same principal 1 'Ít ideal of S. In other words, L is the subset of SxS consis­

ting of all pairs (a, b) such that aUSa=bUSb. It is not hard to see that L is 
an equivalence relation on S such that if aLb then acLbc for all c f S. If 

aLb, we say that a and b are L-equivalent. By La (a f S) we mean that the 

set of all elements of S which are L-equivalent to a. Dually we define aRb to 
mean that a and b generate the same principal right ideal of S. The join of 

the equivalence relations L and. R is denoted by D. If a f R and b f L , then 

aDb if and only if R n L '7얘， the empty set. We define H=LnR. 

We now list some known properties [1, p. 59] of a semigroup L(V) of all 
linear transformations of a vector space V(F). 

(3) L(V) is a regular semigroup. 

(4) Two elements of L(V) are L-equivalent if and only if they have the 

same range space. 

(5) Two elemlents of L(V) are R-equivalent if and only if they have the 
same nuII space. 

(6) Two elements of L(V) are D-equivalent if and only if they have the 
same rank. 

(7) Two elements of L(V) are H-equivalent if and only if they have the 

same range space and the same nuU space. 

We shaU hav닝 a different proof of the following [1, Theorem2. 4] . 

THEOREM. If a and b are two elements z.n L(V) , then LaRb={xy: xfLa and 

Yf Rb}c Dc, μlhere c=ab. 

PROOF. If X f La and Y f Rb' then R(x)=R(a) and N(y)=N(b) by the above 

(4) and (5). It follows from Theorem 1 that p(xy)=p(x)-dim(R(x) nN(y)) 
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=p(a)-dim (R(a) nN(b))=p(ab). The theorem follows from the above (6). 

We have the fo l1owing. 

COROLLARY. If a and b are two elements in L(V) , then HaHb C Dc. where 

c=ab. 

We have in general that RaLb ct Dab' 

4. REMARK. In the semigroup theory, one of the most important theorems 

is Green’ s Lemma [1, Lemma 2.2]. Using Green’ s Lemma, Miller and Clifford 
proved the following very important theorem. 

THEOREM (Miller and Clifford). If a and b are elements of a semigroμ:þ S, 
then ab f Ra n Ló '1 and only '1 Ró n La contains an ideηzþotent. If this is the case, 

then aHb=Hab=Hfió=RanLó=Haó' 

A blemish of the above theorem is that the theorem does not include the 

case when Ró n La does not contain an idempotent. Therefore we set the 

fo l1owing conjecture which is true if S is L(V). 

CONJECTURE. If a and b are elements of a semigroup S, and if Ró n La does 

not contain an idempotent, then fió= U Ha:c' 

Xf lt b 

PROBLEM. Generalize Green’ s Lemma. 

The author wishes to express his gratitute to Professor .A. H. Clifford of 
Tulane University for his letter and the following proof of theorem 1. 

The Proof of Theorem 1 by Professor A. H. Clifford: 

Let E=BIR(A) , the linear transformation B restricted to R(A). R{E) 

=R(AB) , so p(AB)=p(ß). But ρ(E)=dim R(A)-dim N(ß), dim R(A)=p(A) , 
and N(B) =R(A) n N(B). Putting then together gives the desired result. 
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