THE RANK OF THE PRODUCT OF TWO MAIRICES
By Jin Bai Kim

1. It is well known that the rank of the product of two matrices cannot
exceed the rank of either factor. The natural question can be raised: What

is the rank of th product of two matrices? We shall give an answer to
this question in Theorem 1 and we shall have an application of this Theorem 1.

2. Let F be a field, and V(F)=V a vector space over F. Let L(V) be the

multiplicative semigroup of all linear transformations of V. With each ele-
ment 4 of L(V) we associate two subspaces of V'

(1) the range space R(A) of A, consisting of all x4 with x in V,

(2) the null space N(4) of A, consisting of all y in V such that yA=0.
0(A) denotes the rank of the linear transformation A.

THEOREM 1. [f A and B are two linear transformations of a finite dimension-
al vector space V(F). then o(AB)=p(A)—dim(R(A) NN(B)).

PROOF. Let dim V(F)=#n. Let {z;:¢=1,2,...,m} be a basis for the null space
N(A). We can supplement this basis by #-m vectors {x,: =12, .. ,n-m} to
obtain the basis x;, %5, .., X,_ps 21s 29, «+» 2, fOr V(F). The vectors x4, x,4,..
XA, 2{4, 2,4,..,2, A are generators for the range space R(A). Since
2. A=0 (=1,2,..,m), vectors x,4, x,4,..,%,_, A4 are also generators for
R(A). _

These vectors are linearly independent. If ¢,(x;4) +¢,(%gA) 4+ +¢,,_ 1 (% )

=0 for c;eF, then(XZ;Z{cx)A=0and 2"""c;x; € N(A). Since the set {r, x,

N

veesXy_ms &1 Z9.45%,F 15 an independent set, this implies that ¢; are all 0.

Hence if we set yt.='xz-A (G=1,2,...,0-m) {y;: i=1,2,...,n-m} is a basis for
R(A).Let [y, ¥, ..,5, denote the subspace of the vector space V(F) generated
by the vectors y; (/=1,2,...,%). Then R(4)= [¥sYor e ¥,_,,] and hence
there 1s a set {y,-J : J=1,2,..,k} of vectors in the set {y;: /=1,2,..,#-m} such
that {y,-‘i : j‘=1,2, .., k} is a basis for the space R(A) NN(B). Without loss of
generality, . we may assume. that R(ANNB)=[y;,Y5..,¥,] and k<n—m.
Then {y;B: i=k+1,k+2,..,n—m} is an independent set. To see this, assume
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that Ck+1(yk+1B)+ck+2(yk+2B)+"'+Cn—m(yu—m-3)=0' Then #= Z?;gilc"y"

eR(A)NN(B) and hence we have the following expression #=¢;9;-+Co¥o+...
tcy, for some c;e F, (1=1,2,.., k). Since the set {yz_: i=1,2,..,n—m} is a linear-
ly independent set, this implies that ¢;=0 (/=k+1,k+2,..,n-m). Thus {y.B
. i=k+1, k+2,..,n-m} are linearly independent vectors. Now we see that
0(AB)=dim[yB,y,B,..,,_,,Bl =dim [y, 1B,y 9B, ¢, ¥, _ Bl
=p—m—Ek=p(A)—dim(R(A) NN(B)). This proves the theorem.

3. We shall have a trivial application of Theorem 1 in semigroups. Let S
be a semigroup. We define e¢Lb (e,b€S) to mean that ¢ and b generate the
same principal 1-ft ideal of S. In other words, L is the subset of SXS consis-

ting of all pairs (a,d) such that elJSe=56USb. It is not hard to see that L is
an equivalence relation on S such that if e¢Lbd then acLbc for all ceS. If

eLb, we say that ¢ and b are L-equivalent. By L, (¢€S) we mean that the
set of all elements of S which are L-equivalent to e. Dually we define aRb to
mean that ¢ and b generate the same principal right ideal of S. The join of
the equivalence relations L and R is denoted by D. If eae R and be L, then
aDb if and only if R\ L#¢@, the empty set. We define H=LR.

" We now list some known properties [1,p.59] of a semigroup L(V) of all
linear transformations of a vector space V(F).
(3) L(V) is a regular semigroup.

(4) Two elements of L(V) are L-equivalent if and only if they have the
same range space. |

(5) Two elemlents of L(V) are R-equivalent if and only if they have the
same null space.

(6) Two elements of L(V) are D-equivalent if and only if they have the
same rank.

(7) Two elements of L(V) are H-equivalent if and only if they have the
same range space and the same null space.
We shall have a different proof of the following [1, Theorem2. 4].

THEOREM. If @ and b are two elements in L(V), then L,R,=1xy: xe L, and
ye R,y D,, where c=ab.

PROOF. If x € L, and ye R;, then R(x)=R(e) and N(»)=N(b) by the above
(4) and (5). It follows from Theorem 1 that o0(xy)=p(x)—dim(R(x) NN¥))
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=p(e)—dim (R(e) NN(b))=p(ab). The theorem follows from the above (6).
We have the following.

COROLLARY. If a and b are two elements in L(V), then H,H,C D, where
¢ =ab. '

We have in general that R,L, d D,,.

4. REMARK. In the semigroup theory, one of the most important theorems
is Green’s Lemma [1,Lemma 2.2]. Using Green’s Lemma, Miller and Clifford
proved the following very important theorem.

THEOREM (Miller and Clifford). If e and b are elemenits of ¢ semigroup S,
then abe R, Ly if and only if Ry(1L, contains an idempotent. 1f this is the case,

then aeHy=H b=H H,=R,(\L;=H 4.

A blemish of the above theorem is that the theorem does not include the
case when R, L, does not contain an idempotent. Therefore we set the

following conjecture which is true if S is L(V).

CONJECTURE. If ¢ and b are elements of a semigroup S, and if R,(1L, does

not contain an idempotent, then H,= | H,,.
xe H b

PROBLEM. Generalize Green’s Lemma.

The author wishes to express his gratitute to Professor A.H. Clifford of
Tulane University for his letter and the following proof of theorem 1.

The Proof of Theorem 1 by Professor A.H. Clifford:

Let B=B|R(A), the linear transformation B restricied to R(A). R(B)
=R(AB), so o(AB)=p(B). But o(B)=dim R(A4)—dim N(B), dim R(A)=p(A4),
and N(B)=R(A) | N(B). Putting then together gives the desired result.
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