
A GENERALlZATION OF A TBEOREM OF ALFSEN AND FENSTAD 

By C. J. Mozzochi 

In this paper the theorem of Alfsen and Fenstad, namely that every 
proximity cIass of uniform spaces contains one ànd only one totaIIy bounded 
uniform space, is generaIized to symmetric generaIized uniform spaces 

(introduced by the author in [2]). AIso, a new characterization of totaIIy 

bounded uniform spaces is obtained. 

" This paper is based on part V of the author’ s thesis, Symmetric generalized 
unzform and proximity spaces, submitted in partial fulfiIIment of the require
ments for the degree of Doctor of Philosophy in the Graduate School of Arts 

and Sciences of the University of Connecticut. The author wishes to acknowl

edge his indebtedness to Professor E. S. Wolk, under whose direction thc 

thesis was written. 

Let X be a non-void set. For every A, B in P(X) let U A,B= (XXX) 

-((AXB) U (BXA)). 
DEFINITION. Let (X, W') be a symmetric generalized uniform space. (X, W') 

is þ-correct iff there exists a symmetric generaIized proximity δ on X such 

that the fam iIy .9' = {U A. B I A δ B} is a subbase for W'. δ is caIIed the 

geηerator proximity for W'. 

LEMMA 1. Let (A1, "', An) and (B1, …, Bn) be n-tuples 01 noη-l，'’oid sμbsets 

of a set x. Let rr=UAl,Bln---nUA.,B.·Let I1={k1, …, 강} and 12= {j1' …, jq} 

be sμbsets 01 {l, …, n}. Suppose Xo f (Ak, n ... nAk,nBj , n…nB) and xof A; 

tf i , 11 and xo' Bj il i , 12, Then U [xo] =E. where E is eqzeal to 

(X-Bk)n … n (X -Bk) n (X -Aj) n … n(X-Aj ). 

REMARK. In the sequel to simpIify the language we wiIl abbreviate the 

hypothesis of Lernma 1 as foIIows: “ Suppose Xo f (Ak, n ... nAk.nBj, n … n Bj.>

and Xo is in no other Aj or Bj'" 

PROOF of LEMMA 1. By De Morgan’s law 

U= (X×X)-(Ul [(Ai× Bi) U (B,×Ai)] ). 

Suppose t f U [xo]. Then (xo' t) f U; so that since Xo f (Ak, n ••• n AII. n Bj, n … n B1·,) 
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we have that t; B Iz‘ i=l. …. p and t ; Aj, i=l. …. q. Consequently. 

tf E and E 二) U [xol. To show the reverse inclusion. suppose there exists 

t 1 f (E -U [XO])' Then (XO' t 1) ; U; so that (XO' t 1) is an element of 딘 [(AjXBj) 

U (BjXA)l. Suppose (xo, t1) ε (AmXBm) where 1 드 m 드 n. Then since 

'1 f E , we have that m,pk j for z'=I. …, ψ; so that Xo f Am and m t/ 11 which is 

a contradiction. Suppose (xo, t 1) ε (BmXAm) where 1 드 % 드 n. Then since 

t1 εE. we have that m~h for i=l. …. q; so that Xo f Bm and m; 12 which is 

a contradiction. Hence E=U [xol. 

REMARK. Let (A1• …. An) and (B1• …. Bn) be n-tuples of non-void 

subsets of a set X. 11={k1…'. kfJ} and 12= {j l ’ .... jq} be any two subsets of 

{l, …. n} and let 
E={xlx ε Aj zJf z' f 11 and x f Bj 修 i f 12}. If E ,prþ. we call E a residual 

쩌tersectz'on of the Aj and Bj' 

It is clear that residual intersections are mutually disjoint; so that .!7l. the 

family of all residual intersections of the Aj and Bj' provides a decomposition 

of U {(AjUBj) Iz'=I. …. n} into mutually disjoint sets. 

THEOREM 2. Let (X. ~) be a p‘ correct symmetric generaUzed μmJorm space. 

Then (X , ~) z's totally bounded. 

PROOF. Let U f~. and let δ be a generator proximity for ~. Then there 

exists a finite family of sets A1 • .... An; B1• …, Bn such that Aj δ Bz for t= 

1, …, % and UAl, Bln---nUA., B.=Vc=U. Now if UKAt-UBt)|i=1, …, n} ,p X. 

then for any Xo ε X - U {(AjUBj) Iz'=I, …. n} we have that V [x여 =X. and 

the theorem follows; so we assume that U {(A j U Bj) I i = 1. …, 싸=X. Let 갱 

be the family of all residual intersections of the Aj and Bj' From each R f .!7l 

choose one and only one point and denote that point xR• Let S={xRIRf .!7l}. 

Clearly, since .!7l is finite. S is also finite. We now show that V[Sl =X. Let 
Zf X. Since we assume that U{(A jUB)li=l , …• n}=X. we have that z f R 

for some R f .!7l. Consequently. for some k1, … , kp ; jl, … , j q' Z f (Ak , n … n 

Ak.nBj, n … nBj) and Z is in no other Aj or Bj' But by the definition of S 

there exists xR in S such that XRf (Ak ,n ... nAk.nBj,n ... n Bj) and xR isinno 

other Aj or Bj' By Lemma 1 we have that V [xRl is equal to (X -Bk) n .•• 

n (X -Bk) n (X -Aj) n ... n (X -Aj)' But since Aj δ Bj for all t' we have that 

z ￠ Bkj for z·=1, …, p and z; Aj‘ for z'=I, …• q. Consequently, Z f V [xRl. 
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But z is an arbitrary point in X. Hence V[S] =X; so that U[S] =X. 

THEOREM 3. A symmetric uniform space (X. ~) is totally bounded iff for 

some proximt"ty δ 0% X the famz·ly f= {UA, B | A S B} z·s a sztbbase for (X, Z/). 

LEMMA 4. Sμ:ppose {A,.} and {B,.}. z' = 1. …. n are finite seqμences 01 non-νoid 

subsets of a set X sμchthatforallz'Aj~Bjand U{Bjli= l, ...• n}=X. Then 

we have that 

F= (XXX)-，따 [(X-A,.)XBj] U [BjX(X-Aj)] ζj [Az × 4] · 

PROOF of LEMMA 4. Let (x.y) E F. Then since U {Bjli=l •••.• n}=X we 

have that (x. y) E (Bk,XBk,) where 1 드 k1 드 n and 1드k2 드 n. But it is clear 

that (x. y)f [(X-Ak,)XBk
‘
]; so that since y E Bk,’ X E Ak. But Ak, ~ Bk. 

Hence (x. y) E (Ak,XAk). 

LEMMA 5. Let (X. δ) be a proximt"ty space. Let ~ be a totally bounded 

symmetrz'c μm'formt'ty on X that is z'n π*(δ). a proximity class of symmetric 

μm'forηzities on X. Then for every U E iiY there exist sets A 1’ ”·, An;Bl’ 
... , Bn 

uch that U~UA"B， n ••. nuA •. B. and Ajo Bj for i=l ••••• n. 

PROOF of LEMMA 5. Let U E~. We know there exists V E ~ such that V= 
V- 1 and (VoVoV) cU. Then since (X. ~) is totally bOllnded. there exist 

sets B 1’ ”·, B” such that Ui[Bi]=X and 뇌[BjXBj]cV. Let Aj=V[Bj]. Since 

V[Bj] n (X-V[Bj])=Ø. Aj>>Bj. z'=l • •••• n. AlSO. by a straightforward 

calculation. we can show for z'=l. …. n that (AjXAj) c VoVoV. Hence we 

have that 늬 [AjXAj] ζ U. But by Lemma 4 

(X× X) -，디 [(X-Aj)XBj] U [BjX(X-Aj)] c 핀l[At × Ai] ; 

so that UB"X-A , n ... nuB .. X_A.CU' 

and Bj δ (X -Aj) for i=l. …. n. 

PROOF of THEOREM 3. Suppose for some proximity δ on X .9' = {U A. B I A 0 B} 

is a subbase for~. Then ~ is a p-correct symmetricgeneralized u:hiformity 

on X. and hence by Theorem 2 ~ is totally bounded. 

Conversely. suppose ~ is totally bounded. It is known (cf. [3] Theorem 
(21. 14) and Theorem (21. 15)) that for some proximity δ on X ~E π한δ). a 

proximity class of symmetric uniformities on X. Suppose Aj δB‘ for i=l. …• n. 

For each z'. z'=l. …. n there exists a symmetric V j E ~ such that 
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(AjXBi) nvj=ø. and hence such that U A"B, 그 V j' Consequently. we have 

that U = (U A., B. n … n UA .. B) 그 (V1 n … n V n); so that U f~. By this fact and 

Lemma 5 we have that the family .9'={UA， BIA δ B} is a subbase for ~. 

THEOREM 6. Let (X. δ) be a symmetrz'c generalized proxz'mt'ty space. There 

exz'sts z'n π(δ) one and only one p-correct symmetrz'c generalz'zed un장ormz'ty， 

~2 (õ). on X. 

LEMMA 7. Let (X , δ) be a symmetrz'c generalized proxz'mt'ty space. Let (C1’ 
'. Cn) and (D1, … . Dn) be n-tuþles 01 non-νoid sμbsets 01 X sμch that Cj δ Di 

lor z'= 1, …, n. Then (c1n ... nCn) Ò (D1 U".UD써· 

PROOF of LEMMA 7. Suppose that (C1 n ... n Cn) δ (D1n ... nDη). Then (C1n 
... nCn) δ Dk where 1 드 k 드 n. But Ck~ (c1n ... ncn); so that Ck δ Dk which. 

is a contradiction. 

LEMMA 8. Let (X. δ) be a symmetric generalized proxz'mity space. Then 
p δ Q ill there exist χ-tμ:ples (A

1• … .Aπ) aηd (B
1’ .... Bn) 01 sμbsets 01 X sμck 

tkat (UAl,Bin---nUA.,B.)[P] nQ=￠， attd AJδ Bj lor z'=I. …. n. 

PROOF of LEMMA 8. If PòQ. then it is clear that Up,Q[P] nQ=ø. 
Converse1y, Iet V=UAl,Bin---nuA ,B· Since V[P] nQ=￠， we have Pc= 

U {(AjUBj) li= 1. …. n}. Let α= {E1• …. Em} be the pairwise disjoint family of all 

residual intersections of the Aj and Bj that have a non-void intersection with. 

P. Clearly. PcM=U{Eclc=l. …• m}. By Lemma 1 since α is a pairwise 

disjoint family. if t1 f (pnEc) and t2
f (pnE) where 1 드 c 드 m. then V [/1] 

=V [t2]' Let Fc=V [tc] for c=l. …• m where tc is a fixed point in Ec' Then 

we have that V[P] = U{Fclc=l. …. m}. But since V [P] nQ=ø we have that 

Qc(X-V[P]); so that by De Morgan’s law Q c N where N= n {(X -Fc) I 

c=l. …. m}. Let Ecf α where 1 드 C 드 m. We may assume that Ec c E션=AkL 
n---nAk, nBjln…n Bj, for some k1 • .... kp; jl' …. jq and Ec intersects no 

other Aj or Bj' Consequently. by Lemma 1 and De Morgan’ s law (X-Fc> 
= (Bk• U … UBμUA1l U…UAj)' Hence by Lemma 7 E/ò (X-Fc) where 1 드 

c 드 m; so that Ec δ (X-Fc) where 1 드 c 드 m. Hence again by Lemma 7 

M δ N; so that P δ Q. 

LEMMA 9. Let (X. ~) be a p-correct syηzmetric generalized unilorm space 

with generator proximity δ• Then δ(~)=δ. 

PROOF of LEMMA 9. Suppose P δQ • Then by Lemma 8 there exists 
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U 1: 2! such that U [P] n Q=rþ; so that P ô(깡찌. 
Conversely, suppose P 하깡;Q. Then there exists V f 2! such that V [P] n Q 

=rþ; so that by Lemma 8 P Ò Q. 

PROOF of THEOREM 6. For the notation used in this proof see [2]. Let 9 
={U A.BIA δ B}. Let $8={all fz"쩌te ùztersecHons 01 members 01 g}. It is clear 

that $8 satisfies (M.1) and (M.2). By Lemma 8 and Theorem 1 in [2] we 

have that g; also satisfies (M.3) and (M.4). Consequently, by Theorem 
(5) in [2] we have that 2!2(δ)={UIU=U-l and V 그 U lor some V f S6'} is a 

symmetric generalized uniformity on X. It is clear that 2!2(δ) is p-correct, 

and by Lemma 9 that 2!2(δ)f π(δ). We now show that 2!2(δ) is the only 

p-correct symmetric generalized uniformity on X that is in π(δ). For suppose 
'7' f π (δ) and (X, '7') is p-correct with generator proximity δ1. Clearly, δl 

# δ if 2!2(δ) ;i: '7'. But by Lemma 9 we have that δ(γ)=이 which is a 

contradiction, since we assume '7' ε π(δ). Hence '7'=2!2(δ). 

COROLLARY 10. (Alfsen-Fenstad). Let (X, δ) be a proxiηzity space. There 
exists z.n π(δ) one and only one totally bounded symmetric μnzJormity on X. 

PROOF. By Theorem 3 and Theorem 6, it is sufficient to show that 2!2(δ) 

satisfies the triangle axiom. We note that if V ,.oV ,. c U,. for i=l, …, n, 

then (V1n…nVn)o(v1 n ... nvn) cu1n ... nUn where V ,. and U .. for i=l, …, n 

are subsets of (XXX). Consequently, it is sufficient to show that for each 

U A.B f 2!2(δ) there exist a V f 2!2(δ) such that VoVCUA.B• We now show the 

existence of such a V. Since A δ B there exist sets C and D such that C nD 

=rþ and C)>A and D))B. Let V=(UA.X-C)n(UB.X_D). We show VoV 

ζUA. B• Suppose (x, y)fV and (y, Z)fV. We mustshowthat (x, Z)fUA.B or 

equivalently that (x, Z) t (AxB) U (BXA). Clearly, if x t (AUB) , then for 
every t f X we ha ve that (x, t ) f U A. B. Hence we may assume that X f (A U B). 

Two cases now occur. Case 1, X f' A, and Case 2, X f B. These are the only 
possibilities for x since AnB=rþ. 

CLAIM 1. lf X f A , then Z t B. For suppose Z f B. Then (y, Z) f (CXB). But 
since CnD=rþ, (X-D) 그 C; so that ((X-D) xB) 그 (CXB). Hence (y, Z) t V 

which is a contradiction. By a similar argument we get 

CLAIM 2. lf x f B, then Z t A. 

By claim 1 if xf A , then (x, Z) t (AXB); so that (x, Z) f U A. B. By Claim 2 

if Xf B , then (x, z) t(BXA); so that (x, Z)fUA.B• 
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