Determination of Reactivities by Molecular Orbital Theory (I) Theoretical Treatment on the Photochemical Reaction of Benzene and Maleic Anhydride

분자 궤도론에 의한 반응성 계산 (I) Benzene과 Maleic Anhydride 간의 광화학 반응

  • Myung-Hwan Whangbo (Dept. of Applied Chemistry College of Engineering, Seoul National University) ;
  • Ikchoon Lee (Dept. of Applied Chemistry College of Engineering, Seoul National University)
  • 황보명환 (서울대학교 공과대학 응용화학과) ;
  • 이익춘 (서울대학교 공과대학 응용화학과)
  • Published : 19691200

Abstract

The MO's of maleic anhydride are calculated using the parameter values, $h_{o}$.= 1, $h_{o}$:= 2, $k_{c=o}$= 1, $k_{c-o}$= 0.8, and ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$. With these MO's the interaction energies of the photochemical reaction of maleic anhydride (MA) with benzene are calculated using intermolecular orbital theory. It is shown that there are cases where the interaction energy includes a constant term and this term takes a great role in the photochemical interaction energy, and that with the calculated interaction energies the reaction mechanism is quite well explained. And it is proved that the photochemical reaction is possible for the second addition step of MA to benzene, and that the MA-benzene adduct should have the well-known stereochemical structure.

Maleic Anhydride의 분자궤도를 다음의 파라미터를 사용하여 계산하였다. $h_{o}$=1, $h_{o}$=2, $k_{c=o}$ =0.8 ${\delta}_{{\alpha}_n}=2{\times}(0.3)^n$ 얻어진 분자궤도들로부터 Benzene과 Maleic Anhydride(MA)의 광화학적반응의 작용 에너지를 구하였다. 작용에너지에는 상수항이 포함될 수 있으며 이항이 작용 에너지에 크게 기여함을 보였고 이 반응의 메카니즘은 계산된 작용에너지로 잘 설명됨을 밝혔다. 또한 MA의 두번 째 첨가반응이 광화학적으로 가능하며 MA-Benzene의 부가 생성물은 잘 알려진 입체 화학적 구조를 가져야함을 증명하였다.

Keywords

References

  1. The Chemistry of the Petroleum Hydrocarbons v.3 C. Walling
  2. 1955-00-00 v.5 R. B. Woodward;T. J. Katz
  3. Tetrahedron Letters v.4 M. J. S. Dewar
  4. J. Chem. Soc. v.691 R. D. Brown
  5. Quart. Revs. v.6 R. D. Brown
  6. Helv. Chim. Acta v.42 H. Hopff;H. R. Schweizer
  7. J. Am. Chem. Soc. v.77 J. A. Berson;R. D. Reynolds
  8. J. Am. Chem. Soc. v.77 L. J. Andrews;R. M. Keefer
  9. Proc. Chem. Soc. H. J. F. Angus;D. Bryce-Smith
  10. Tetrahedron Letters v.21 G. O. Schenck;R. Steinmetz
  11. Austrailian J. Sci. Research v.2A R. D. Brown
  12. J. Chem. Soc. R. D. Brown
  13. J. Am. Chem. Soc. v.90 L. Salem
  14. J. Am. Chem. Soc. v.91 A. Devaquet;L. Salem
  15. J. Am. Chem. Soc. v.87 R. Hoffmann;R. B. Woodward
  16. Molecular Orbital Theory for Organic Chemists A. Streitwieser, Jr.
  17. J. Chem. Soc. T. H. Goodwin
  18. Acta Cryst. v.15 R. E. Marsh;E. Ubell;H. F. Willoox
  19. J. Chem. Phys. v.39 R. Hoffmann
  20. Trans. Faraday Soc. v.54 S. Soundarjan;M. J. Vold
  21. Molecular Orbital Theory for Organic Chemists A. Streitwieser, Jr.
  22. J. Am. Chem. Soc. v.89 W. H. Hardham;G. S. Hammond
  23. Electronic Spectra and Quantum Chemistry C. Sandorfy
  24. Organic Photochemistry R. O. Kan
  25. J. Chem. Soc. H. J. F. Angus;D. Bryce-Smith
  26. J. Am. Chem. Soc. v.83 E. Grovenstein, Jr.;D. V. Rao;J. W. Taylor
  27. Chem. Ind. (London) D. Bryce-Smith;B. Vickery
  28. J. Chem. Soc. D. Bryce-Smith;J. E. Lodge
  29. J. Phys. Chem. v.56 Mulliken
  30. Trans. Faraday Soc. v.56 Simons
  31. J. Chem. Soc. D. Bryce-Smith;A. Gilbert
  32. Chem. Ind. v.10 Zbigniew Raciszewski
  33. J. Am. Chem. Soc. v.90 R. C. Dougherty