The Effects of Nitrogen Type and Fertilized Depth on Leaching and Absorption of Nitrogen in Paddy Soil and Growth and Yields of Rice

질소비료(窒素肥料)의 형태(形態)와 시용심도(施用深度)가 질소(窒素)의 용탈흡수(溶脫吸收) 및 수도(水滔) 생육수량(生育收量)에 미치는 영향(影響)

  • Maeng, D.W. (College of Agriculture, Korea University) ;
  • Cho, C.Y. (College of Agriculture, Korea University) ;
  • Lee, D.S. (The Association for Potash Researeh)
  • Published : 1968.12.31

Abstract

In order to find the effects of nitrogen type (ammonium sulfate and urea fertilizer) and fertilized depth, (0~10cm, 0cm, 5~10cm, 10~15cm, 15~20cm, and 20cm below) on leaching and absorption of nitrogen in paddy soil, and growth and yields of rice, the pot culture experiment was carried out, using the variety Jaekun, one of the Korean leading variety. Experimental results were Summarized as follows: 1. No variations of the pH of percolating water were induced by the differences of nitrogen types and their fertilized depth (Table. 2). 2. The leaching of nitrogen was less in ammonium sulfate and top soil fertilizing plots than in urea and subsoil fertilizing plot, and the growth of rice in early stage was more promoted in ammonium sulfate and topsoil fertilizing plots (Table. 1, 7 and 8). 3. Leachng of nitrogen through the percolating water almost came to an end at the most numerous tiller stage (Table 1). 4. The absorption of nitrogen of each part of the rice plant in the harvesting stage correlated closely with the yields of each part (Table 5, 6, 9 and 10) and the leaching of nitrogen in the early stage was inversely proportion to the absorption of nitrogen of rice plant in the harvesting time (Table 1, 5, 6, 9 and 10). 5. The number of spikes was more numerous in ammonium sulfate plots than in urea plots on an average, so that the yields were higher in the ammonium sulfate plots than in urea plots although no differences in the grain number per spike were found in above two plots. The number of spikes was more numerous in topsoil fertilizing plots than in subsoil fertilizing plots, but the grain number per spike was less in former than in latter, so that no difference in yields was found. The absorption of nitrogen correlated closely with the yields in complete paddy grains (Table 5, 9, and 10). 6. At the ammonium sulfate fertilizing plots, the number of spikes was more numerous in topsoil fertilizing plots than in subsoil fertilizing plots, (among the each of the topsoil plots, 0~10cm and 5~10cm fertilizing plots kept more spikes than the 0cm fertilizing plots), but the grain number per spike was less in former than in latter (among the each of topsoil plots, no differences were found), so that no significant difference in yields was showed between the topsoil and subsoil fertilizing plots, but the results showed the tendency that the yields were highest in 0~10cm plots and the lowest in 20cm below plots. At the urea fertilizing plots, the number of spikes decreased in proportion to the increasing of fertilized depth, but no variations were found in the grain number per spike, so that the yields decreased in proportion to the increasing of fertilized depth. The absorption of nitrogen correlated closely with the yields in complete paddy grains (Table 5, 6, 9, and 10). 7. When fertilized in topsoil, the number of spikes was more numerous in ammonium sulfate plot than in urea plot, but the grain number per spike variated reversely, so that no differences were found in the yields between the ammonium sulfate and the urea plots, when fertilized in subsoil, both the number of spikes and the grain number per spike were larger in ammonium sulfate than in urea plot, so that the yields were also higher in ammonium sulfate plots (Table 5, 6, 9 and 10). 8. The weight of straw and its nitrogen absorption were higher in ammonium sulfate plot than in urea plot and decreased in proportion to the increasing of fertilized depth. Among the each of topsoil fertilizing plots, the 0~10cm and the 5~10cm fertilizing plots excelled the 0cm plot (Table 5, 6, 9 and 10). 9. No significant variations in the fertilizer treatments were found in the characters of heading date, maturing date, length of culm, length of spike, weight of empty grain, 1,000 grain weight, and one liter weight.

질소비료(窒素肥料)를 유안(硫安)과 뇨소(尿素)로 구분(區分)하고 질소(窒素)의 75%를 이앙기(移秧期)에 시용심도(施用深度)를 달리하여 주고(0~10cm 작토전층시비(作土全層施肥), 0cm 작토표층시비(作土表層施肥), 5~10cm 작토심층시비(作土深層施肥), 10~15cm 심토상층시비(心土上層施肥), 15~20cm 심토중층시비(心土中層施肥), 20cm 이하(以下) 심토하층시비(心土下層施肥)) 수도(水稻)(품종(品種) 재건(再建))를 Pot 재배(栽培)하여 질소(窒素)의 용탈(溶脫), 흡수(吸收), pH 변화(變化) 및 수도(水稻)의 생육수량(生育收量)을 조사(調査)한바 그 성적(成績)의 개요(槪要)는 다음과 같다. 1. 삼투수(渗透水)의 pH는 질소비료(窒素肥料)의 종류(種類)나 시용심도(施用深度)에 따른 차이(差異)가 없다(Tabel 2). 2. 유안구(硫安區)는 뇨소구(尿素區)보다, 작토시비(作土施肥)는 심토시비(心土施肥)보다 질소(窒素)의 용탈량(溶脫量)이 적고 초기생육(初期生育)(초장(草長), 분얼(分蘖))은 앞서 간다. 그러나 작토(作土)의 층별간(層別間)에서 표층시비(表層施肥)가 전층(全層) 심층시비(深層施肥)보다 못한 결과(結果)는 표시(表示) 되지 않았다(Table 1, 7, 8). 3. 삼투수(渗透水)에 의(依)한 질소(窒素)의 용탈(溶脫)은 최고분얼기(最高分蘖期)를 지나면 거의 없어진다(Tabel 1). 4. 수확기(收穫期)에 있어서의 도체명부(稻體名部)의 질소(窒素) 흡수량(吸收量)과 명부(名部) 수량간(收量間)에는 밀접(密接)한 비례적관계(比例的關係)가 인정(認定)된다. (Tabel 5, 6, 9, 10) 또 초기(初期)의 질소용탈(窒素溶脫)과 수확기(收穫期)에 있어서의 도식물전체(稻植物全體)의 질소흡수(窒素吸收)는 대체(大體)로 역비례(逆比例)하는 경향(傾向)을 표시(表示)하고 있다(Tabel 1, 5, 6). 5. 유안구(硫安區)는 뇨소구(尿素區)보다 평균적(平均的)으로 수수(穗數)가 많아서 일수입수(一穗粒數)에 별차이(別差異)가 없는데도 수량(收量)(정조중(正租重))은 많다. 작토층시비(作土層施肥)는 심토층시비(心土層施肥)보다 평균적(平均的)으로 수수(穗數)는 많으나 일수립수(一穗粒數)는 적어도 수량(收量)에는 별차이(別差異)가 표시(表示)되고 있지 않다. 정조(正租)의 질소흡수(窒素吸收)도 수량(收量)(정조중(正租重))과 거의 동일(同一) 경향(傾向)을 표시(表示)하고 있다(Tabel 5, 9, 10). 6. 유안구(硫安區)에서는 수수(穗數)가 심토층시비(心土層施肥)보다 작토층시비(作土層施肥)에서 많고 작토층시비(作土層施肥)에서도 작토표층(作土表層) 시비(施肥)보다 작토(作土), 전층(全層) 또는 심층시비(深層施肥)가 많았고 일수립수(一穗粒數)에 있어서는 심토층시비(心土層施肥)가 작토층시비(作土層施肥)보다 많고 작토층별간(作土層別間)에서는 큰 차이(差異)가 없어서 수량(收量)에서는 시용심도별차이(施用深度別差理)가 크지 않으나 수치(數値)의 경향(傾向)은 작토전층시비(作土全層施肥)가 최대(最大), 심토하층시비(心土下層施肥)가 최소(最小)의 수량(收量)이 되어 있으나 수량차(收量差)에 통계적(統計的) 유의성(有意性)은 인정(認定)되지 않았다. 뇨소구(尿素區)에서는 시용심도(施用深度)가 클수록 수수(穗數)는 적으나 일수립수(一穗粒數)에는 대차(大差)없어서 수량(收量)은 시용심도(施用深度)가 클수록 적은 경향(傾向)이었다. 정조(正租)의 질소흡수(窒素吸收)도 대체(大體)로 수량(收量)과 동일(同一) 경향(傾向)이었다(Table 5, 6, 9, 10). 7. 작토층시비(作土層施肥)에서는 수수(穗數)가 뇨소구(尿素區)보다 유안구(硫安區)가 많으나 일수립수(一穗粒數)는 반대(反對) 경향(傾向)이어서 수량(收量)은 유안구(硫安區)와 뇨소구간(尿素區間)에 별차이(別差異)가 없고, 심토층시비(心土層施肥)에서는 유안구(硫安區)가 뇨소구(尿素區)보다 수수(穗數)가 많고 일수립수(一穗粒數)도 많은 경향(傾向)이어서 수량(收量)도 많다. 정조(正租)의 질소흡수(窒素吸收)는 수량(收量)과 동일(同一) 경향(傾向)이었다(Tabel 5, 6, 9, 10). 8. 고중(藁重)과 고(藁)의 질소흡수(窒素吸收)는 유안구(硫安區)가 뇨소구(尿素區)보다 크고 시용심도(施用深度)가 깊을수록 적은 경향(傾向)이었으나, 작토(作土)에서는 표층시비(表層施肥)보다 전층(全層) 심층시비(心層施肥)가 컸다 (Tabel 5, 6, 9, 10). 9. 출수기(出穗期), 성열기(成熱期), 간장(稈長), 수장(穗長), 비중(粃重), 1000입중(粒重), 1l중(重)에는 구간차(區間差)가 인정(認定)되지 않았다(Tabel 9, 10).

Keywords