· · · · · **TOPOLOGICAL SPACES WITH LARGE UNIFORMITIES**

By Yu-Lee Lee and C. J. Mozzochi

The purpose of this paper is to determine sufficient conditions on the topological space (X, \mathcal{T}) so that \mathcal{U} , the neighborhood system of the diagonal \mathcal{I} in $X \times X$ with the product topology, is a uniformity of X and \mathscr{T} is the uniform topology of \mathcal{R} . We prove this

THEOREM If (X, \mathcal{T}) is locally compact, T_2 , and σ -compact, then \mathcal{R} is σ uniformity for X and \mathcal{T} is the uniform topology of \mathcal{N} .

These results are known:

- A. If (X, \mathcal{U}) is a compact uniform space, then $\mathcal{U} \subset \mathcal{U}$. B. If (Y, \mathcal{T}) is a uniform subspace of the space (X, \mathcal{U}) , then the topology of the relative uniformity \mathscr{T} is the relativized topology of \mathscr{U} .
- C. X is σ -compact if $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is compact for each *i*. If X is locally compact, T_2 , and σ -compact, then $X = \bigcup_i X_i$ where X_i is compact and X_i $\subset X_{i+1}^0$ for each *i*.
- D. If (X, \mathcal{T}) is a completely regular space, then there is a largest uniformity \mathcal{T} for X whose uniform topology is \mathcal{T} . PROOF OF THE THEOREM

It is sufficient to show that if $U \in \mathcal{X}$ then there exists $V \in \mathcal{X}$ such that $V \circ V$ $\subset U$. Let $X = \bigcup_{i=1}^{\infty} X_i$ where X_i is compact and $X_i \subset X_{i+1}^{o}$ for each *i*. Since X_i is compact for each *i*, there exists for each *i* a neighborhood V'_i of $\{(x, x): x\}$ ϵX_i such that $V'_i \subset X_i \times X'_i$ and $V'_i \circ V'_i \subset U$. Note that V'_i for each *i* is a neighborhood of $\{(x,x): x \in X_i^0\}$ in $X \times X$ with the product topology. Let V_1 $=V'_1 \cap V'_2 \cap V'_3$ and $V_2 = V_1 \cup (V'_2 \cap V'_3)$. For each $X \in X_3 - X_2^0 x$ is not a limit point of X_1 ; so that there exists a neighborhood N_x of x such that $N_x \cap X_1 = \phi$. Define

 $V_3 = V_1 \cup V_2 \cup \{ [\cup (N_x \times N_x : x \in X_3 - X_2^0) \cup V_2] \cup V_3 \cup V_4 \}$ Suppose V_{n-1} has been constructed. For each $x \in X_n - X_{n-1}^0$ there exists a neighborhood N_x of x such that $N_x \cap X_{n-2} = \phi$. Define

$$V_n = \begin{pmatrix} v_{n-1} \\ \bigcup_{i=1}^{n-1} \end{pmatrix} \bigcup \{ [\bigcup(N_x \times N_x : x \in X_n - X_{n-1}^O) \cup V_{n-1}] \cap V'_n \cap V'_{n+1} \}$$

8 Yu-Lee Lee and C.J Mozzochi

Let $V = \bigcup_{n=1}^{\infty} V_n$. By construction $V \in \mathcal{R}$. Also, $V_n \subset X_n \times X_n$ and $V_n \subset V_{n+1}$ for each n.

To show that $V \circ V \subset U$ it is sufficient to show that $V_n \circ V_n \subset U$ for each *n*. It is clear that $V_1 \circ V_1 \subset U$ and $V_2 \circ V_2 \subset U$. Suppose $(y, z) \in V_n$ and $(z, w) \in V_n$ where $n \ge 3$.

Let r be the smallest integer such that $(y,z) \in V_r$, and let s be the smallest integer such that $(z,w) \in V_r$.

CASE 1: $r = s \ge 3$. Then (y, z) and (z, w) are both in $[\cup (N_x \times N_x : x \in X_r - X_{r-1}^0) \cup V_{r-1}] \cap V'_r \cap V'_{r+1}$ and therefore in V_r so that $(y, w) \in U$ CASE 2: $3 \le s$ and r < sA. $(s-r) \ge 2$. Then (z, w) is in $[\cup (N_x \times N_x : x \in X_s - X_{s-1}^0) \cup V_{s-1}] \cap V'_s \cap V'_{s+1}$ so that $(z, w) \in N_x \times N_x$ for some $x \in X_s - X_{s-1}^0$. But $N_x \cap X_{s-2} = \phi$. so that $z \le X_{r-2}$ and hence $z \notin X_r$ which is a contradiction since $(y, z) \in V_r$ implies that $z \le X_r$. B. r+1=s. Then (y, z) and (z, w) are in V'_s so that $(y, w) \in W$.

B. r+1=s. Then (y,z) and (z,w) are in V'_s so that $(y,w) \in U$. CASE 3: $3 \ge r$ and s < r

Proof is similar to proof of CASE 2.

That \mathscr{T} is the uniform topology of the uniformity \mathscr{U} is easily established. We wish to thank Professor E. S. Wolk for suggesting the condition σ -compactness.

> University of Florida Gainesville, Florida and University of Connecticut Storrs, Connecticut

BIBLIOGRAPHY

[1] Kelley, J. L.; General Topology, New York, Van Nostrand, 1955.
[2] Shirota, T.; On Systems of Structures of a Completely Regular Space. Osaka Math.
J. 2 (1950) 131-143.