A CHARACTERIZATION OF COMPLETENESS

By Yu-Lee Lee

It is well known that a function f on a topological space X to a topological space Y is continuous if, and only if, for each net $\{S_n, n \in D\}$ in X which converges to a point s, the composition $\{f \circ S_n, n \in D\}$ converges to f(s). We also know that if f is a uniformly continuous function on a uniform space (X, \mathcal{U})

with values in a uniform space (Y, \mathscr{V}) , then for each Cauchy net $\{S_n, n \in D\}$ in $(X, \mathscr{U}), \{f \circ S_n, n \in D\}$ is also a Cauchy net in (Y, \mathscr{V}) . But the converse does not hold as shown by the existence of continuous but not uniformly continuous functions on a complete uniform space to a complete uniform space. However we have the following theorem.

THEOREM 1. If f is a function on a uniform space (X, \mathcal{U}) with values in a uniform space (Y, \mathcal{V}) such that for each Cauchy net $\{S_n, n \in D\}$ in (X, \mathcal{U}) $\{f \circ S, n \in D\}$ is also a Cauchy net in (Y, \mathcal{V}) , then f is continuous relative to the uniform topologies.

PROOF. Let $\{S_n, n \in D\}$ be a net in (X, \mathscr{U}) which converges to a point s but $\{f \circ S_n, n \in D\}$ does not converge to f(s). Then there exists an open neighborhood N of f(s) such that $\{f \circ S_n, n \in D\}$ is frequently in the complement of N. Hence $\{S_n, n \in E\}$ is a subnet of $\{S_n, n \in D\}$ where $E = \{n \in D: f \circ S_n \notin N\}$. Let $\{T(m, n), (m, n) \in E \times E\}$ be the net in (X, \mathscr{U}) defined by

T(m,n) = s (when $m \neq n$)

and $T(m,m)=S_m$.

Then $\{T(m, n), (m, n) \in E \times E\}$ converges to s and hence is a Cauchy net. Since N is a ueighborhood of f(s), there exists V in \mathscr{V} such that $V[f(s)] \subset N$ and hence $f \circ T(\mathfrak{u}, \mathfrak{m}) \notin V[f(s)]$ for all m in E: that is, $(f \circ T(\mathfrak{m}, \mathfrak{m}), f \circ T(\mathfrak{n}, 1)) \notin V$ for all m and $n \neq 1$. Therefore $\{f \circ T(\mathfrak{m}, \mathfrak{n}), (\mathfrak{m}, \mathfrak{n}) \in E \times E\}$ is not a Cauchy net. Since Cauchy nets and Cauchy filters are so closely related, the following theorem can be expected.

THEOREM 2. A function f from a uniform space (X, \mathcal{U}) to a uniform space (Y, \mathcal{V}) preserves Cauchy nets if, and only if f preserves Cauchy filter bases.

PROOF. Suppose that \mathscr{F} is a Cauchy filter base in (X, \mathscr{U}) but $\{f(A): A \in \mathscr{F}\}$ is not a Cauchy filter base in (Y, \mathscr{V}) , Then there exists V in \mathscr{V} such that for each

6 Yu-Lee Lee

A in \mathscr{T} , there are a_1 and a_2 in A such that $(f(a_1), f(a_2))$ is not in V. Direct $\mathscr{T} \times \{1, 2\}$ by \geq as follows: $(F, m) \geq (G, n)$ if $F \subset G$ and define the function $S: \mathscr{F} \times \{1, 2\} = X$ by

 $S(A, 1) = a_1, \quad S(A, 2) = a_2$

where a_1 and a_2 are in A and $(f(a_1), f(a_2))$ is not in V. Then $\{S(A, m), (A, m) \in \mathscr{T} \times \{1, 2\}\}$ is a Cauchy net but $\{f \circ S(A, m), (A, m) \in \mathscr{T} \times \{1, 2\}\}$ is not a Cauchy net.

Conversely let $\{S_n, n \in D\}$ be a Cauchy net and let $A_n = \{S_m: m \ge n\}$ and \mathscr{T}

 $= \{S_n : n \in D\}$; then \mathscr{T} is a Cauchy filter base. Hence for each V in \mathscr{V} there exists A_n in \mathscr{T} such that $\{(f(a), f(b)) : a \text{ and } b \text{ are in } A_n\} \subset V$. Therefore $\{(f \circ S_i, f \circ S_j) : (i, j) \ge (n, n)\} \subset V$ and $\{f \circ S_m, m \in D\}$ is a Cauchy net.

If (X, \mathscr{U}) is a complete uniform space, it is clear that every continuous mapping on (X, \mathscr{U}) preserves Cauchy nets. However it is interesting that the converse is also true.

THEOREM 3. Every continuous function f on the uniform space (X, \mathcal{U}) preserves Cauchy nets, if and only if (X, \mathcal{U}) is complete.

PROOF. Suppose that (X, \mathscr{U}) is not complete and $let(X^*, u^*)$ be a completion of (X, \mathscr{U}) and identify X with the image under embedding. Then there exists y in X^*-X and p in the gage of (X^*, u^*) such that $p(x, y) \neq 0$ for all x in X. Define a function f on X to the reals with the usual uniformity by f(x)= 1/p(x, y). Then f is continuous but does not preserve Cauchy nets.

> Department of Mathematics University of Florida Gainesville, Florida U.S.A.

• • • • •

REFERENCES

N. Bourbaki; Topologie generale, Actualtes Sci. Ind. Paris.
J.L. Kelley; Geneal Topology, Van Nostrand Company, New York, 1955.
J.R. Isbell; Uniform Spaces, Amer. Math. Soc., Providence, Rhode Island, 1964.

-

•