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A CHARACTERIZATION OF PARACOMPACT
SPACES BY THE FILTERS IN THEM

I. Introduction

The concept of a paracompact space has been
introduced in 1944 by Dieudonné [1] as a genera-
lization of certain compact spaces. In his paper,
it has been proved that the product of paracom-
pact space and every compact space (Hausdorff)
is normal and that the set of all npeighborhoods
of the diagonal is a uniformity for it. The
compactness has already been characterized thro-
ugh the device of the filter’s formation. The
purpose of this thesis is also to find a way to
characterize the paracompactness in the similar
filter's formation. As it has been suggested in
the 2nd statement of Dieudommé’s paper, the
paracompactness could be formulated in terms
of uniform structures. Corson proved in [1] that
a T,space X is paracompact iff X admits a
uniformity under which every filter, satisfying a
Cauchy-like condition i. e. weakly Cauchy filter,
has a cluster point. Based on Corson’s conteribu-
tion, the present thesis attempts to construct
another characterization of paracompaciness by
filter’s formation:

A Hausdorff space (X, J) is paracompact iff
every filter in X has the cluster points in (X, 9),
whenever the fliter has the cluster points in
each pseudo-metric space (X, p) whose topology
is weaker than the original topology.

In the next Preliminary section, we shall first
discuss some basic concepts for the paracom-
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pactness, and these willl pave the way for the
further development of the present thesis.

II. Preliminaries

In this section, we reveiew the basic concepts
and terminologies relating to the paracompact
space and introduce some notations that will be
used in our subsequent development.

And we present the various characterizations
of paracompactness which bave already been
found.

Definition 1. A nonvoid set X with a family
T of subsets is called a topological space if &
satisfies the following conditions:

a) The void set ¢ and the whole space X belong

to 7.

b) The union of members of any subfamily of

F is again a member of J.

c) The intersection of any finite members of

is again a member of 9.

The family J is called a topology for X, and
the members of 4 and called the open sets of
X in this topology.

The other terminologies and theories of the
topological spaces may be found either in Bour-
baki [1] and [2] or Kelley [1].

Definition 2. A filter $ ina setX is a family
of non void subsets of X such that:

a) the intersecction of two members of & alwayg
belongs to & and
b) if A&% and ACBCX, then BESF,
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As the theory of convergence has been built
on the concept of filter, we can use the concept
of net instead of filter.

2.1) A filter & converges to a point x in a
topological space X iff each neighbor hood of x
is a member of & (i e, the neighborhood system
of x is a subfamily of #).

2.2) In a topological space X, a point x isa
culster point of filter & on X iff x is a closure
point of each member of #.

The other terminologies and and theories of
filters including the base of filter, ultrafilter and
convergence of filter, etc., are given in Bourbaki
[1] and [2].

Definition 3. A metric for a set X is a function d
on the cartesian product X x X to the non-negative
reals such that for all points z,y and z of X,
a) d(xz, y)=d(y, x)

b) d(x, y) +d (3, 2) 2d(x,2)
¢) d(z,y)=0 if x=y, and
d) if d(z,y)=0, then x=y.

A function d which satisfies only (a), (b) and
(c) is called a pseudo metric on X.

From a notion of metric (pseudo metric), we
can driectly derive the toplogy, i. e. metric topo-
logy (resp. pseudo metric topology) whose base
is the family of all open balls:

{y:d&xy <ri >0, zyeX}

Definition 4. A uniformity for 2 set X is a
pon void family % of subsets of X xX such that
a) each member of % contains the digonal 4;
b) if Ue%, than U'&%,
¢) if Ue¥, then VeVcU for some V in %;
d) if U and V are members of %, then UNV

€%; and
e) if UE¥ and UCVCcXxX, then VE#.

The pair (X, %) is a uniform space.

The theory of uniform space including uniform
continuity, base, subbase for uniformity, uniform
topology and uniform isomorphism, etc. may be
found either in Bourbaki [1], [2] or Kelley [1].
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Definition 5. Afilter # in a uniform space(X,
%) is weakly Cauchy if for every UES% some
filtur stonger than % becomes U small. That is,
there is a filter £, #.,DO% and HxHZU for
some HEH# ..

Definition 6. A family F of pseudo metrics for
a set X is said to be a gage iff there is # for
X such that Pis the family of all pseudo metrics
which are unifomly continuous on XxX relative
to the product uniformity derived from <%, and
% is generated by P.

Definition 7. A family & is a cover of a B
iff Bis a subset of thz uaion U {A : A€A}.
Expecially in topological space X, a family & is
an open cover of X iff each member of & is an
open set.

A subcover of & is a subfamily- which is also
a cover.

A cover @ of a set X is a refinement of a cover
& iff each member of @& is a subset of a member
of &. )

A cover ¥ is a star-refirement of ¥ iff the
family of stars of % at points ~f X is a refinement
of ¥, where the star of # at r&X is the union
of the members of # to which x belongs.

Definition 8. A family Z of subsets of a
topological space is locally finite (discrete) iff
each point of the space has a neighborhood
which intersects only finitely many (resp. at most
one) members of &. A family & is o-locally
finite (o-discrete) iff it is the union of a countable
number of locally finite (resp. discrete) subfamilies.

Definition 9. A family @ of subsets of a
topological space is closure-preserving iff, for every
subfamily @'C@, the union of closures of mem-
bers of @' is the closure of the union of mem-
bers of &', and @ is o-closure preserving if

(L=G ., where each (I, is closure preserving.
A=}

If % and ¥ are families of subsets of X, then
we say that ¥ is cushioned in % if one can
assign to each VE¥ a U,e% such that, for
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every ¥'cy, UV : ve¥rcu{l,: Verl.
A refinement of % which is cushioned I % is
called a cushioned rgfinement of .

Definition 10. A topological space is fully
normal iff each open cover has an open star-
refinement.

Definition I1. A cover % of a topological space
is called an even cover iff there.is a neighborhood
V of the diagonal in XxX such that {V[x] : x&
X} refines 4.

This concept is derived from the Lesbesgue’s
covering Lemma for a pseudo metric and compact
space.

Proposition 11.1) Let X be a topological space
such that each open cover is even. If Uis a
neighborhood of the diagonal in X x X, then there
is a symmetric neighborhood V of the diagonal
such that V- VU,

Remark. If each open cover of T, (regular)
space, X is even, then the family of all neigh-
borhoods of the diagomnal is a uniformity for X.

Proposition 11.2) Let X be a topological space
such that each open cover is even and let & be
a locally finite (or a discrete) family of subsets
of X. Then there is a neighborhood V of the
diagonal in X x X such that the family of all seis
V [A] for A in @ is locally finite (resp. discrete).

The proofs of the above two propositions are
given i Kelley [1].

Finally, let’s define the paracompactness based
on the above preparations.

Definition 12. A topological space is paracom-
pact iff it is Hausdorff and each open cover has
an open locally finite refinement.

Since it is not hard to show that a Hausdorff
space is regular if each open cover has an open
locally finite refinement. Hence the usual definition
of paracompact space in Kelly [1] specifies regular
instead of Hausdorff.

In what follows the various charcterizations of
paracompactness are presented.

Theorem 1. * If X is a regular topological space,
than the following statements are equivalent.

a) The space X is paracompact.

b) Each open cover of X has a locally finite
refinment.

¢) Each open cover of X has a colsed locally
finite refinement.

d) Each open cover of X is even.

d") X is fully normal.

€) Each open cover of X has an open o-discrete
refinement.

f) Each open cover of X has 'an open c¢-locally

{inite refinement.

&) Each open cover of X has a closure-preserving:
open refinement.

h) Each open cover of X has a closure-preserving:
refinement.

1) Each open cover of X has a closure-preserving
closed refinement.

j) Each open cover of X has a o-closure-preser-
ving open refinement..

Corollary 1. A paracompact space is normal..

Corollary 2. Each pseudo metrizable space is.
paracompact.

Corollary 3. The family of all neighborhoods.
of the diagonal is the uniformity for a paracompact
space.

Corollary 4. The image of a paracompact
space, under a continuous, closed mapping, must
be paracompact.

Theorem 2.** If X is a T,-space, then the:
following statements are equivalent.

a) X is paracompact.

b) Each open cover of X has a cushioned refi-
nement.

¢) Each open cover of X has an open ¢-cushioned

refinernent.

* The equivalences (b), (c), (¢} and (f) of Theorem 1 are due to E. Michael 1], (d) is due to J. S Griffin and Kelley
(d) to A. H. Stone [1], and (g), (h), (i), (j) to E. Michael [2].

** Theorem 2. is due to E. Michael [3]
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Theorem 3. A T,(regular) and locally compact
space is paracompact iff it is the “somme” of the
members of the family of the locally compact and
g-compact spaces.

This theorem is due to Bourbaki [1].

It is noted that this theorem is the relation
between the paracompact space (global nature of
space) and locally compact space (local nature of
space).

Theorem (Dieudomné) A product space of
paracompact space with a Hausdorff and compact
space is also paracompact.

III. Results

Theorem 1. A Hausdorff space X, %) is
paracompact iff every filter in X has a cluster
point in (X, Z7), whenever the filter has a cluster
point i each pseudo metric space (X, p) whose
topology is weaker than the original topology.

Lemma 1. If X is paracompact, then the set of
all neighborhoods of the diagonal is a uniformity
for X, and the product of X and every compact
(Hausdorff) space is normal.

Proof. These follow from the Theorem 4 and
Theorem 1. Corollary 3 in section II.

Lemma 2. If X is paracompact, then each
weakly Cauchy filter with respect to such a
uniformity in Lemma 1 has a cluster point.

Proof. Let  be such a uniformity for X, i.e.
% is the family of all neighborhoods of the
digonal.

Let & be a filter which is weakly Cauchy
under %. Let us assume that % has no cluster
point in X. Since X is Tychonoff space, it has
the Stone-Cech compactification 8(X) of X.

Let A be the set of cluster points of & in
B(X). Then it is easily verified that A and AxX
are disjoint closed sets in B(X)xX, and conse-
quently there 1s a neighborhood U of A such
that U does not intersect AxX, for 8(X) xX is
normal.

Since % is the family of all neighborhoods of

rEBEGE BB
the diagonal A, Us%.

Since & is assumed weakly Cauchy, therz is
a filter 5, stronger than % with Hes#, and H
xH contained in U. Since 8(X) is compact, &,
has also a cluster point in 3(X), this cluster point
is also a cluster point of &, and it clearly is not
in A. This contradicts the assumption that A was
the set of all cluster points of &

Lemma 3. If (X, %) is a uniform spacz whoss
uniformity is a family of all neighborhoods of the
diagonal, then the gage of # is the family of
pseudo metrics which are continuos on X x X with
respect to the product topology.

Proof. Let P be the gage of % and P’ be the
family of pseudo metrics which are continuos on
X x X, By difinition, P is the family of pssudo
metrics which are uniformly continuous o1 XxX.
Otherwise the uniform continuity implies the
continuity. Hence PCCP’. A pseudo metric p om
X is uniformly continuous on X xX relative to
the product uniformity iff V, ,={(x,y) : p(x,¥) <
r, x%,yEX) is a member of % for each » > 0.
Since each member p of P’ is continuous oa Xx
X and % is the family of .l neighborhoods of
diagonal, V, &% for each » <0, Therefore, p
is uniformly continuous on I <X. PDOP’ With
above result PCP’, P=P’,

Lemma 4. If (X, %) is a uniform space whose
uniformity is a family of all neighborhoods of the
diagonal, then the gage of % is the family of
pseudo metrics whose topologies are weaker than
the original topology.

Proof. Let P be the gage of % and P’ bz the
family of pseudo metrics whose topolgies are
weaker then the original topology. By Lemma 3,
P is the family of pseudo metrics which are
continuous on XxX. Let p&P’/, Then p is a
continuous function on (X, p) x (X, p) and the
original tepology is stronger than pseudo metric
topology dertved from p. Therefore, p is a cow-
tinuous function on (X, 9) x X, J), where &
is the topology of umiformity %, p&P, P'CP.
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Let p=P. Since P is the gage of &, the identity
map of (X, &) onto (X, p) is uniformly con-
tinuous. The identity map of (X, ) onto (X, p)
is continuous. Hence the pseudo metric topology
derived from p is weaker then J. p&P’. P'DP.
Therefore P=P’.

The proof of Theorem.

Proof of necessary condition:

Let % be the family of all neighborhoods of
the diagonal, and let P be the family of pseudo
metrics whose topologies are weaker than the
original topology. Then By Lemma 1, # is the
uiformity for X, and P is the gage of « by
Lemma 4.

By Lemma 2., it is sufficient to prove that
every filier with the given condition is weakly
Cauchy filter with respect to #.

Let & be any filter in X with the given condi-
tion. Let U be a member of %. There exists the
pseudo metric pEP such that V,,cU for some
>0, Since & has the cluster pont in (X, p), let
A be the set of all cluster points of & in (X, p).
As=¢. For any €A, there exists the stronger
filter 3¢, then & such that 5, converges to x
m (X, p).

Let &y=sup {3€.: .~z X,p)}. Then
clearly o, is stronger than & and J¢, contamns
U small sets, for 5, converges to x, for r >0,
there exists a neighborhood B(%)r(z) of x such

that B(,n!),(x)eﬁu. where B(%}(x)= {y 1h(x 3

1
()t
Hence B(%)r(x) XB(_;_)_(x)CV,,,CU. F is weakly

Cauchy filter in (X, @). Therefore & has the
cluster point in (X, 7).

Proof of sufficient condition:

Let’s assume that X be not paracompact. Then
there exists an open cover % of X which has not
an open locally finite refinement.

Let # be the family of finite subfamilies of

%. Let’s consider the family F/'=X~U{U:U
€'} - U'=¥}. Since each member of ¥ can
not be a cover of X, each member of &' is
nonvoid. The intersection of any two members
of &' contains the member of &#’. Therefone,
F' is the base for filter m X. Let & be the
fiker generted by &’. Then & has no cluster
point in X. For, let x be any point of X, then
there exists UE¥ such that x&U. r&X~UcgF
and X~U is dosed. xEX~U2 F

By hypothesis, there is a pseudo metric pSP
such that & has no cluster point in (X, ). Let’s

. . A
consider a family ¥ '={X~F :FE#} of open

sets in (X, p), where i means the interior in
X, p). Since # has no cluster pont in X, p),

n{f«"em =¢, where A means the closure
of A in (X, ). Hence U{X~F : FEF}=X.

ap
That is, U{E~F :FesF}=X.

Therefore, ¥ is an open cover of (X, p). Every
pseudo metrizable space is paracompact, so is
(X, p). There exists an open locally finite refi-
nement ¥’ of ¥ in (X, p).

pray
For each V&%, there exists X~F&¥ such

op

that VeX~FCX~F=U{U: Ue®,/'c¥}. Ot
herwise, an open set in (X, p) is open in (X,7),
for the pseudo metric topology is weaker than
F. {VNU : Ue®,'} is the finite family of open
sets o (X, 7).
CF={VNU : Ue#,/'c¥, VE¥'} is an open
locally finite refinement of % n (X, ). For
every xX, there exists an open neighborhood
N, of zin (X, p) such that N, intersects only
finite members {V,, -+ , V.} of ¥'. Hence N,
intersects only the members of {UNV,:Ue&
2% JUETEN Uyunyv, : ve#..’;.

Therefore, N, itersects only finite members
of ¥.Otherwise, we assume that % has no open
locally finite refinement, we arrive at the contra-
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diction. Hence X is paracompact.

Corollary. Lemma 1and Lemma 2 are sufficient
as well os necessary for paracompactness res-
pectively.

Proof. Paracompact space ==> Lemma 1. =>
Lemma 2 = Theorem 1—=—> Paracompact space.
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