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A NOTE ON THE BOCHNER-HERGLOTZ-
WEIL-RAIKOV THEOREM

INTRODUCTION

The well known theorem of Bochmer-Herglotz-
- Weil-Raikov states that a linear functional f
defined on a semi-simple, self-adjoint, commuta-
tive Banach algebra A is positve and extendable
+if and only if there exists a finite positive Baire
measure % on the maximal ideal space of A sach
that f(x)=|% du for every x in A.

1t is the purpose of this paper to seek for condi-
«tions that may be replaced to the semisimplicity
and selfadjointness of the assumption for A.

A modified form of the Bochner-Herglotz-Weil-
Rai"~y Theorem is stated in Theorem 2.1 and
Theorem 2.2 below.

In case when A is a complex algebra (not
necessarily a Banach algebra), the above conditions

- may be replaced by the assumption that A have
an involution and a positive functional f on A.

In case when A is a Banachaigebratheabove
conditions may be replaced by the assumption
that A has a continuous involution.

By the same argument as in pp. 98—99 of
[13, it then comes out that the Plancherel
theorem [1,26]] can also be modified in a similar
fashion as will be remarked at the end of this
paper.

The highlight of CHAPTER I is to mtroduce
notations and basic theorems which will be
referred to CHAPTER IL

CHAPTER L PRELIMINARIES
The purpose of this introductory chapter is to
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set- notation and terminology and to list some:
basic known results that will be of later use. All
unexplained notations and terminologies will be:
found in [1] and [2]. Unless otherwise noted,.
the word “(Banach) algebra” means a complex
(Banach) algebra throughout this paper.

Definition 1.1 A mapping r—>2* defined on an.
algebea A is an involution if it has at least the:
first four of the following properties.

1, z¥*=g

2. (z+y)*=r*+y*

3. (Ax)*=Ar* (1 is a complex scalar)

3 (ay)*=y*s*

5 [ xx*|=l| x|

6. —xx* has a quasiinverse (e+xx* has am
inverse)

By a *-algebra, we shall mean an algebra having
an involution. A *-algebra is said to be symmetric
if it further satisfies (6). A Banach algebra with
an involution satisfying all the properties (1) to.
(6) is said to be a C*-algebra.

Definition 1.2 We denote the space of all
regular maximal ideals of an algebra A by M..
Ifm=m“‘foranyminM,thenmissaidtobe~
a symmetric regular maximal ideal of A. The-
radical of a commutative algebra is the intersec-
timn of its all regular maximal ideals. I the
radical is zero, the algebra is said to be semi-
simple.

Definition 1.3 Let 4 be the space of all con-
timaous non-zero homomorphisms of an algebra
A onto the complex numbers. For every x im.
A, the function £ on 4 is defined by x (k) =h(x),
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14, We denote by A the algebra of all such
funtions % on 4. A commutative Banach algebra
A is said to be self-adjoint if for every x in A
there exists a unique y in A such that §=%.

Let A be any algebra over a field F and X be
a linear space over the same field F. We denote
by L(X) the algebra of all linear transformations
of X into itself, by B(X) the algebra of all bounded
linear transformations of X into itself, and by
‘C(X) the alhebra of all complex-valued continuous
functions on X.

Any homomorphism ui A into the algebra L(X)
is called a representation of A on X. Among the
representations of an alhebra A, there is the so-
called left (right) regular representation on the
linear space .\ obtained by taking for each a in
A the linear transformation T, defined by T,x
=ax (T, x=2xa) for x in A. The representation
T, is a *representation if L (X) has an involution
and it is true that T *==(T,)*.

Definition 1.4 If A is a *-algebra, a linear fun-
ctional f on A is said to be positive if f(xx*) =0
for all x in A, and a positive functional f is
called extendable if it satisfies the conditions
[f(x) [2<kf (xz*) and f(x*)=F(x).

For a fixed positive functional f defined on a
dense ideal A, of an (Bamach) algebra A, an
element pEA, is said to be positive definite if
the functional f, defined on A by f,(x)=f(px)
is positive and extendable,

For convenience, we state here theorems of
Bochner-Herglotz-Weil-Raikov and Plancherel, for
the proof of which the reader is referred to pp.
97—99 of [1].

Theorem 1.1 (Herglotz-Bochner-Weil-Raikov).
If A is a semi-simple, self-adjoint, commutative
Banch algebra, then a linear functional fon A is
postitive and extendable if and only if there exists
a finite positive Baire measure # on M such that

S(x)=|3du for every z in A.
Theorem 1.2 (Plancherel) Let A be a semi-
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simple, sel{-adjoint, commutative Banach algebra,
and let j be a positive functional defined on dens2
ideal A, in A. Then there is a unique Baire
measure # on M such that p&L'(u) and f(px)
= f (2p)du whanever p is positive definite with
respect to f,

For the proofs of thz following theorems which
will be used in CHAPTER I, see p. 214, p. 226
and p. 229 of [2].

Theorem 1.3 Every positive functional f in
Banach algebra with a continuous involution
inequality  f(xag*x*) <Kaf (xx*),
where Ka is a constant determined by a.

Theorem 1.4 In any Banach algebra A having

satisfies the

a continuous involution and a positive and exten-
dable functional f on A, there exists a pseudo-
norm |x| for which |f(x)| <K-|x!.

Theorem 1.5 The pseudo-norm |x! in A,
given by Theorem 1.4, is equal to max |x(m)|
for m&M,, where M,, is the space of all symme-

tric regular maximal ideals of A.

CHAPTER 1. BOCHNER-FERGLOTZ-WEIL-
RAIKOV THECREM ON A COMPLEX
ALGEBRA AND BANACH ALGEBRA

Theorem 1.1 and Theorem 1.2 have assumned
that A is a semi-simple, self-adjoint commutative
Banach algebra, that is, have assumed that £*=
£. But the hypothesis that £*=£ can be dropped
both of Theorem 1.1 and Theorem 1.2, We
shall start with any commutative *-algebra and
Banach *-algebra.

Lemma 2.1 Let f be a positive functional on
a commutative *-algebra A. Then K= {x:f(xx*)
=0, x&A} is a right ideal of A aad the quotient
space A/K is a pre-Hilbert space.

Proof. Let %, z be in K and y be in A. Then
by Cauchy-Bunyakovsky’s inequality |/ {xy*){?
<f(xx®) - fyy*) =0, f((x+2)-(x+2)*) =1 ax*)
+f(x2%) + f(zx*) +f(22*) =0, and f(raa*x*) =
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f(z(xae*)*)=0 for all ¢ in A. Thus K is a right
ideal of of A.

We denote residue classes with respect to K
by £, 7, Z, --eo with representative x, ¥, 2, -+ ,
respectively, and define (X, ¥) =f(xy*) for arbi-
trary x and y of A.

To see that (&, ) is well defined, observe that

F((x+ky) (y+k2)*) =1 (xy*)
+f(Rey®) + f (k™) + f (ki)

If &, and k, are m K, then f{ky*) = f(zk,*)
=0, and (%, ¥) is well defined.

The functioa (%, §) with X and ¥ ranging over
the quotient space A/K has usual properties of
an inner product. Specifically, since f(xy®
is a linear function for fixed ¥ and taken into its
complex conjugate by interchanging of Xand 7.
Since f(x) is a positive functional, we have
(%, ¥) = flax*) =20, If (%, ) =0, then f(xx*)
=0, which shows that x belongs to K, . e., ==0.

This implies that K is a right ideal of A and
the quotient space A/K is a pre-Hilbert space.
This completes the proof.

We denote by e—U, the right regular repre-
sentation of A on A/K.

Lemma 2.2 Let A be a commutive *-algebra
(Banach algebra having a continuous involution)
and f be a positive functional satisfying the
condition f(xaa*x*) <Kaf(xx*) (f be a positive
functional). Then for any ¢ in A U, is bounded
with respect to the f inner product norm and a
-, is a *represention of A on the Hilbert
completion of A/K.

Proof. Let ||| be the f<inmer product mnorm
in A/K. By Lemma 2.1 and Theorem 1.3, for
any a in Aand ¥ in A/K [UFIP=(Uzx, U=
f{xae*x*) <Kaf (xx*) =Ka(z, X) =Ka | T2

Thus U, is bounded and in thia case U, can be
uniquely extended to the Hilbert space which is
the completion of A/K.

Morever,

T UL g=x(a+h) =za+b=Uz+U,%,
U, #=x(ab) =U, (xa) =U,U,%,
Uz, §)=f(zay*) =f(x(ya*)*) = (&, U*Y)-

This implies that e—U, is a *representation
of A. This completes the proof.

The set B={U,: a=A} is a C *-algebra under
the mviloution U,—»U.* [1, p. 28] We denote
the space of all complex valued non-zero homo-
morphisms on B by 4,.

Lemma 2.3 Let #” bz an element of 4,.
Define k be a functional on A such that h(a)=
R (U,). Then & is an element of 4 and M,={k:
Ked, hla)=k (U,)} is a closed subset of 4 in
the weak topology.

Proof.. Let & be an element of 4, and &
be a functional such that 2(a) =k (U.). Since U:
a—U, is a *representation of A, #U is a hom-
omorphism of A into the complex numbers and
h(a)=HK (U,)=h'(U(a))=h"U(a), his an element
of 4.

We designate U by U*h’. i h'+h"”, then
U*h'+=U*r’’. Thus U* is a 1-1 mapping of 4,
into 4.

The toplogy of 4, is the weak topology de-
fined by the algebra of functions (U(@)). But
U@ () =k (U@) = UH) @ = a(U*k) and
since the function 4 define the topology of 4,
the mapping U* is a homeomorphism.

Now let %2 be any homomorphism of 4 in the
closure of U*(d4,), that is, for xj, -~ » Xy there
exists A'Ed, such that |h(x) -k Ux)) 1 <s
i=1, oo eee , % This implies that, if U(x;)=U(x,),
then k(x,)=h(x;) so that the function 4’ defined
by & (U(x))=h(x) is single valued on B. Thus
F is a homomorphism of B onto complex numbers
and h(x)==h'(U(x}), i. e, R=U*". Hence U*
(4,), is closed in 4. This completes the proof.

Theorem 2.1 Let A be a commutative *-alge-
bra with a positive functional f on A such that
f(xaa*x*) <Kaf (xx*). Then a linear functional F
on A is positive, extendable and |F(x)| <Kz},
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if and only if there exists a finite positive Baire
measure #; on M, such that F(x)=[xdu, for x

every x in A, where |Z{, is the uniform norm
of £ restricted on M,.
Proof. By above Lemmas, for any x# in A and

kin My (B =%*(h). If F(x)=|%du, where u,
is a finite positive Baire measure on M,, then
F () =[1£1%dus20,

F(x*) =% duy=(|% dus)~=F(x),

IR0 = [7 dur|'< (112 du) (f1 dup
=K F(xx¥),

IF ()= |7 dus| <[ 2 1 ud =1 21 [1 dy
=kl

that is, F is positive and extendable. Conversely,
if F is positive, extendable and |F(x) | <K £
then th linear functional I, defined on A,={%:
h(x)=3i(h), h&M/} by L (£)=F(x) is bounded
and since A, is dense in C(M;) by Stone-Weier-
strass theorem, . can be extended to C(My).
If f/€C(M,) and f'>0, then f'¥ can be un-
iformly approximated by functions £&A; and f’
can be uniformly approximated by functions |£12
Since I;(1x1?) = F(xz*) >0 and I.(|Z]%) appro-
ximates I- (f"), it follow that I.(f)>0. That is,
1z is a bounded intergral. If u, is related measure,

we have the desired result F(x)={% du, for all
x in A,

Theorem 2.2. Let A be a commutative Banach
algebra having a continuous involution. Then a
linear functional f on A is positive and extendable
if and only if there exists a finite positive and
extendable if and only if there exists a finite
positive Baire measure # on M, such that f(x)
=|[xdu for every x in A, where % is restricted on
M, which is the space of all symmetric regular
maximal ideals of A.

Proof. Since M, is the space of all regular
symmetric maximal ideals of A, for any x in A
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and b in My 08 =2*(h). If f(x):jf du whers

u is a finite positive Baire measure on M,, thea
f(:cx"‘)=f|a?l2 du=>0,
fG*)y=|3* du=(|2 du)y~=f(),

1f(x) l’—-:Uf duré(fh?l” du) (fl du)
=Kf (xz*);

that is, f is positive and extendable. Conversely,
if f is positive and extendable, then by Theorems
14 and 15 |f(2) | <K}xl=K max|Z(m) | for m=
M,. Therefere f may be regarded as a bounded
linear functional on A,={%: m&M,}. Since A,
is dense in C(M,) by Stone-Weierstrass theorem,
the bounded linear functional I; defined on A by
1/(2) =f(x) can be exiended in a unique way to
C(Mo).

If /eC(M,) and f'>0, then f’fl can be un-
iformly approximated by functions %. Since I,
(£1) =f(xx*) >0 and I;(1£1? approximates I,
(f), it follows that I,(f)>0. That is, I, is a
bounded integral. If # is related measure, we

have desired result f(x)=|% du for all x in A.

Remarks 1. Theorem 1.2 can be extended to
the *-algebra having the same assumptions as
in Therem 2.1

2. Therem 1.2 can be extended to the Banach
*-algebra having the same assumptions as in
Theorem 2.2.
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