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A NOTE ON TENSOR PRODUCT OF
TOPOLOGICAL LINEAR SPACES

INTRODUCTION

The main purpose of the present paper is to
describe several properties of the temsor product
of two topological linear spaces.

Suppose that E and F are locally convex spaces.
Then EQF with the projective tensor product top-
ology (cf. Chap. 2 for definiton) is a Hausdorff
locally convex space. If further E and F are
metrizable barrelled spaces, then so is EQF.

E®F can be given:the topology of bi-equiconti-
nuous convergence, which is weaker than the
projective temsor product topology. With this
topology, E®F is also a Hausdorff space.

In Chap. 1 we list some basic notation and
preliminary results concerning algebraic tenmsor
product of linear spaces and some properties of a
linear topological space, which will be needed for
the later development.

In Chap. 2, 3*we describe some properties of
tensor product of two topological linear spaces.

CHAP. 1 NOTATIONS AND
PRELIMINARIES

E’s and F’s are linear spaces over the same
scalar field K.

Then the following is 2 well known result:
Let E=XE,;(direct) and F==X,F;(direct). Then
the carmonical mapping of EQF; into EQF is an
isomorphism, for each(i, 7). Furthermore if we
identify E;QF; with its image under the above
cannonical isomorphism, then we have

E®F=5 E.®E;(divect).
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Suppose that(§:) and (7,) are bases of E
and F respectively. Then E=§K{-‘; (direct) and:

F=SI’{1], (direct), whence we get
E®F=£K($,, @m,) (direct).

Thus (£1®m,) forms a basis for EQF.

Suppose that A and B are nonvoid convex.
subsets of a linear topological space E and that
the interior of A is pon-void Then Separation
Theorem asserts that there is a continuous linear-
functiomal on E separating A and B iff B is dis-
joint from the interior of A.

Suppose that E is a locally convex linear topo-
logical space, and that A and B are non-void
disjoint convex subsets of E. Then there is a
continpous linear functional strongly separating A
and B iff O is not a member of the closure of
B-A.

Let (E, ) be a locally convex linear topolo-
gical space.

If A is convex and Fclosed in E, and if x is.
an element which is not in A, then there exists.
a J-continuous linear functional f strongly sepa-~
rating A and {z} since x-A, F-closed set in E,
does not contain zero.

Since f is weakly continuous, no net in A can
converge weakly to x, whence A is w (B, E¥)-
closed.

Since J is stronger than w(E, E¥)-{opology,.
a convex subset of a locally convex space(E, )
is T closed iff it is w(E, E*)-closed.



CHAP. 2 PROJECTIVE TOPOLOGICAL
TENSOR PRODUCT

Suppose that E and E are linear spaces with
algebraic duals E’ and F’ respectively. For xeE
and yeF, let’s define x®y by *Qy (x', ') ={x, x>
{y, ¥ for every (x', y')eE'xF'. Then clearly
1®y is a bilinear form on E/ xF.

Let EQF be the linear span of K(EXF) where
b is the mapping of ExF into B(E', '), the
space of all bilinear forms om E'xF’, and k(x,

¥) =x&y.

PROPOSITION 2. 1,

The space of all linear forms on EQF is iso~
morphic to the space of all bilinear forms ExF.
Proof. Define m (EQF)-B(E, F) by n(f)
=f<k for all fe(EQF)’. Clearly it suffices to
show that x is bijective. Let geB(E, F). Define
f: EQF-K by f(2®y)=g(x, y) and
f(Ex@y)=2g (xs v Suppose that Sz Qy,
=0 and that x,-=§au$aand y.-=‘#§‘b,,,-q,, where

(£:) and (1.) are bases for E and F respectively.
Then gx.@y.:g Saa b2 @n=0.

Since(#:®n,) is a basis for E®F, ‘Z‘“lau by =0
for each (4, 7). On the other hand
2 vo=3[ Zou bug € 1))

=G 6a bi)g €1, 1)=0
Ap

Thus the mapping f is well defined. By the
definition of f, g=fek=n(f). If fok=0, then f
=0 on k(ExF) and so is on EQF. Thus the
assertion follows.
PROPOSITION 2,2, If G is a third linear
space, the space of all linear mappings of EQF
into G is isomorphic to the space of all bilinear
mappings of ExF into G.

Proof. Let’s designate by L(E®F;G) and L
(E, F;G) the space of all linear mappings of
E®F to G and the space of all bilinear mappings
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of ExF into G respectively.

Define m:L(E, F;G) »LEXF;G) by x(f)
(x@y)=f(z, ¥). Then the remaining proofs are
quite the same with the previous ones.

Suppose hereforth in this section that E and
F are locally convex topological linear spaces.
PROPOSITION 2.3, There is one and only
one locally convex topology for EQF such -that,
for every locally convex space G, the space of
all continuous linear mappings of EQF into G
corresponds to the space of all contimuous bili~
pear mappings of ExF into G, that is, the iso-
morphism in (Prop. 2. 2.) preserves continuity.

Proof. Let % and ¥ be local bases for E and
F respectively, and let  be the topology for
EQ®F having as a local base the convex circled
extensions of the sets URQV={x®y: zeU, ¥V}
as U and V run through # and ¥ respectively.

Then the fbllowing statesments are immediate:

1) each element of J is convex, circled and
radial at 0, '

@ U,@V,N0RQV,D U, U, 2V,NVY),

(3) for all non-zero scalar a, the convex circled
extension of a(U®V) is agam an element of .
Thus 9 is a locally convex vector topology for
ER®F.

Suppose that f is a continuous bilinear map-
ping of ExF into a third locally convex space G.
Then there exist U and V neighborhoods of 0 in
E and F resp. such that f(U, V)W where W
is a neighborhood of 0 in G. Then n(f) (URV)
=f({U, V)CW. This shows the continuity of x
(f). The converse is also immediate,

Let F7 be another locally convex topology for
EQF winth the above property.

Taking G=(ERF, F'), we get that F' is finer
than 5.

Again exchanging the role of 9 and 7/, we get
the uniqueness of such a topology.

The algebraic tensor product EQF, equipped
with the above topology is called the “projective
tensor product” and will be denoted by EQ,F.
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Considering the above proposition, we get the
followirg immediately.
PROPCSITION 2. 4. The topology of EQ,F is
the strongest locally convex topology for which
the canmonical bilinear mapping of ExF onto
EQ,F is continuous.

PROPOSITION 2, 5. If E and F are Hausdorff
spaces, then so is EQ),F.
Proof. Let z* be a non-zero element of EQ,F.

Then z*=X xRy, for x,€E and y.€F. Without

=1
less of geperality we may assume that {x;} and
{y;} are linear independent sets m E and F resp.

let V be a circed neighborhood of 0 in F
such that y, &V. If y, belongs to the closure of
s(¥1Ja<i<m the span of {y;} (=2, ---, n), then there
exist scalars s such that éza‘y.- belongs to ¢, +
V. This contradicts to the linear independence of
the set {y;}. Hence 0 does not belong to the
closure of y,—s(¥#1)scic.s Then by Separation
Theorem there exists a continuous linear func-
tional g strongly separating {y,} and s{y}, that
is, lgy)>swigl}t yEsly)

We may assume that g(y;)> 1 and then g(y.)
=0(2<i<n).

Similarly we can select a continuous linear
functional f on E such that f(x,)> 1.

f we set U={x€E:|f(»)|<1}and V={ycF:
g (I<1), then [z(f, @)L for all zEURQV
and |2*(f, g)I> L.

Let’s denote by E®,F the completion of EQF
with the projective tensor product topology.
PROPOSITION 2. 6. If E and F are metrizable,
then EQ,F is a Fréchet space. If E and F are
metrizable barrelled spaces, then so is EQ,F.

Proof. Since E and F are metrizable, there
exist % and ¥ countable local bases for E and
F resp. Then clearly {UQV:Uc®, VE¥} 15
countable, whence EQ,F is metrizable. Thus its
completion is a Fréchet space.

Let’s show the latter assertion.

A lecally convex space E is a barrelled space
iff each w(E*, E)-bounded subset of the adjoint
E* is equi-continuous. By (PROPOSITION 2. 3)
the space of all continuous bilinear forms on
ExF is isomorphic to the space of all continuous
linear forms on E®),F.

Hence it suffices to show that every pointwise
bounded family of continuous bilinear forms om
ExF is equi-continuous.

Let {f,:i<I} be the family. For each closed
convex circled neighborhood W of 0 in the scalars
and for each element r of E, W,={y: fi(x,y) E
W} is a barrel in F for any ¢ of I. Whence
{y; filx, y) EW, AVi€l} is closed, convex and
circled, Since {f;:i€l} is pointwise bounded,
given (x, )& EXF there exists .,> 0 such that
{fielCh{f:1f(x, y)| <1}, Let y be any
element of F and let » be a positive real number
such that r k.,&W.

Then for each element 7 of I, | f.(x, ry)l
=r|fi(x, P Lrkeye
Since W is circled, this means that {y; fi(r,¥)
EWHvicl} is radial at 0. Thus {¥: f;(x, y)EW
qvi€l} is a barrel in F, whence if y,~0, {fi(x,
v.): €L n=1, 2, ---} is bounded. Therefre {x:f,
(x, ¥.) EW, qVi€l, n=1, 2, -} is radial at 0,
and it follows that it is barrel in E.

I x—0, {fi(xy ¥.): 1€ |, n==1, 2, -~} is boum-
ded. Thus the assertion follows.

CHAP. 3 TOPOLOGICAL TENSOR
PRODUCT OF BI-EQUICONTINUOUS
CONVERGENCE

Suppose that E and F are locally convex Haus~
dorff spaces with adjoints E* and F* resp.

For each x €E and y& F, the bilinear func-
tional *®y on E’ xF’ defines by restriction a
bilinear functional on E* x F*, which is separately -
continuous when E* and F* have their w*-topo-
logy.

On the space of all separately continuous bili-
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near functionals on E*xF*, the topology of
uniform convergence on products of equi-conti-
nuous subsets of E* and E* is a vector topology.

The relative topology for EQF is called the
“topology of bi-equicontinuous convergence” and
the tensor product space equipped with this

topology will be denoted by EX®),F.

PROPOSITION 3. 1. The topology of bi-equi-
continuous convergence is the topology of umi~
form convergence on the sets U°®V°, as U and
V run through local bases for E and F resp.

Proof. Let W be a neighborhood of 0 in E®),
F. Then there exist A and B equicontinuous
subsets of E* and F* resp. such that
W= {zQy:| <x, A> <y, B>|<1}. Since A and
B are equicontinuous, there exist U and V ele-
ments of local bases for E and F resp. such that
ACU® and BCV°. Hence AQBCU ®V°.

Thus W is a neighborhood of 0 in the topology
of uniform convergence on the sets U° ®@V.°

Conversely for all U and V elements of local
bases for E and F respectively, U® and V° are
equi-continuous in E* and F* respectively so that
the assertion follows.
PROPOSITION 3. 2
space.

E®,F is a Hausdorff

Proof. Let x*@y* be a non-zero element of
ER®,.F. Then there exist U and V, closed convex
meighborhoods of 0 in E and F respectively such

XapgEa pa

that x*& U and y* & V.

Let W= {xQyEER,F:|<{x,U"> <y, V°> <1}
Then x*@y*&W.

If otherwise, | <x*, U°>|<1 or|<y* V°iK], say
|<a*, U°>|<1. Then 2&U°, which is identical
with U since E is locally convex.
PROPOSITION 3. 3. The topology of bi-equi-
continuous convergence is weaker than the pro-
jective tensor product topology.

Proof. If A and B are equicontinuous subsets
in E*¥ and F* resp., then there exist U and V
elements of local bases for E and F resp. such
that ACU°® and BCV°,

Hence A,oU°, and B,DOV°,. Since E and F
are locally convex, we may assume that U and
V are closed and convex.

In this situation we have already found that
U°,=U and V° =V, Thus A,OU and B.DV,
so that A.®B, D> UKV. Now the assertion
follows.

BIBLIOGRAPHY

(1) J.L.Kelley and i. Namioka, Linear Topolngi-
cal Spaces, D. Van Nostrand Co., 1963.
@) A. E. Taylor, Introduction to Functional
Analysis, Wiley Inc., 1963.
3) C. Chevalley, Fundamental Concepts of Alge-
bra, Academic Press, 1956.
(Seoul National University)

-_11—=





