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A NOTE ON TENSOR PRODUCT OF

TOPOLOGICAL LINEAR SPACES
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INTRODUCTION

The main purpose of the present: paper is to
describe several properties of the tensor product

of two topological linear spaces.

Suppose that E and F are locally convex spaces.

Then E@F with the projective tensor product top­

ology(cf. Chap. 2 for defmiton) is a Hausdorff

locally convex space. If further E and F are

metrizable barrelled spaces, then so is E®F.
E@F can be given the topology of bi-equiconti­

nuous convergence, which is weaker than the

projective tensor product topology. With this

topology, E®F is also a Hausdorff space.

In Chap. 1 we list some basic notation and

preliminary results conceming algebraic tensor
product of linear spaces and some properties of a

linear topological space, which will be needed for

the later development.

In Chap. 2, 3'we describe some properties of
tensor product of two topological linear spaces.

CHAP. 1 NOTATIONS AND
PRELIMINARlES

E's and F's are linear spaces over the same
scalar field K-

Then the following is a well known result:

Let E=E.E.(direct) and F=EJFJ(direct). Then

the cannonical mapping of E&9FJ into E®F is an

isomorphism, for each(i, j). Furthermore if we

identify E;@FJ with its image under the above

cannonical isomorphism, then we have

E0F=E Ej2)EJ (direct).
I,j

Suppose that(f,l) and (71",) are bases of E:

and F respectively. Then E=EKtA (direct) and"
A

F=EK7j", (direct). whence we get
"

Thus (fA ®7Jp.) forms a basis for E0F.
Suppose that A and B are non-void convex.

subsets of a linear topological space E and that

the interior of A is non-void. Then Separation

Theorem asserts that there is a continuous linear·
functional on E separating A and B if{ B is dis­

joint from the interior of A.

Suppose that E is a locally convex linear to{lO­

logical space, and that A and B are non-void'

disjoint convex subsets of E. Then there is a

continuous linear functional strongly separating A

and B iff 0 is not a member of the closure of

B-A.
Let (E, !T) be a locally convex linear topolo­

gical space.

H A is convex and 5"-closed in E, and if ~ is.

an element which is not in A, then there exists.

a !T-continuous linear functional f strongiy sepa­

rating A and {~} since ~-A, 5"-closed set in E,

does not contain zero.
Since f is weakly continuous, no net in A can­

converge weakly to ~, whence A is w (E, E*)­

closed.
Since 5" is stronger than w(E, E*) -topology..

a convex subset of' a locally convex space (E, !T}

is !T-closed iff it is w (E, E*) -closed.
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CHAP. 2 PROJECTIVE TOPOLOGICAL
TENSOR PRODUCT

Suppose that E and E are linear spaces with

algebraic duals E' and F' respectively. For xEE

and veF, let's define x@V by x@y(x', V') =(x, x')

(V, V') for every (x', V') EE' x F'. Then clearly

x@y is a bilinear form on E' x F'.
Let E@F be the Iinear span of k (E x F) where

b is the mapping of Ex F into B(E', F'), the

space of all bilinear forms on E'xF', and k(x,

V)=x(8ly·

PROPOSITION 2. 1.

The space of all linear forms on E@F is iso­

morphic to the space of all bilinear forms Ex F.

Proof. Define n: (E@F)~B (E, F) by n (f)

=!.k for all !e(E<;9F) I. Qearly it suffices to

show that n is bijective. Let geB (E, F). Defme

!: E@F-+K by I(x@y)=g(x, V) and

!CEXi@Ui)='Eg(X.. Vi)' Suppose that i;Xi@Yi
i i i=1

=0 and that Xi='Eai-l f.l and Vi='Eb.p1/" where
.I I'

(f,l) and ('1/1') are bases for E and F respectively.

Then iXiQ9y,=:E ha,,l bi~.l ®'Tlp=O.
i=1 l=lA,fl

Since(e-.l ®'Tl,,) is a basis for E@F, i;Qi-l biP =0
.=1

for each (A, '1/). On the other hand

Eg(x" Vi)=i:[ hQi-l bipg(e-.l, '1/1')]
i-I i=a::l A,/l

=L~!Qi.l bift)g(e-,l, 1/1')=0
.1.1'

Thus the mapping I is well defined. By the

definition of I, g lok=n(f). If fok=O, then I
=0 on k (E x F) and so is on E®F. Thus the

assertion follows.

PROPOSITION 2. 2. If G is a third linear
space, the space of all linear mappings of E@F

into G is isomorphic to the space of all bilinear

mappings of Ex F into G.

Proof. Let's designate by L (E@F ; G) and L

(E, F; G) the space of all linear mappings of

E@F to G and the space of all bilinear mappings

9

of E x F into G respectively.
Define n:L(E, F; G) -+ L(EQ9F; G) by n(1)

(x@Y)=f(x, V). Then the remaining proofs are

quite the same with the previous ones.

Suppose hereforth in this section that E and

F are locally convex topological linear spaces.

PROPOSITION 2. 3. There is one and only

one locally convex topology for EQ9F such ·that,

for every locally convex space G, the space of

all continuous linear mappings of E@F into G
corresponds to the space of all continuous bili­

near mappings of Ex F into G, that is, the is0­

morphism in (Prop. 2. 2.) preserves continuity.

Proof. Let 'Wand "fI' be local bases for E and

F respectively, and let !Y be the topology for

EQ9F having as a local base the convex circled

extensions of the sets U@V= {x@y : xeU, yeV}

as U and V run through 'W and"fl' respectively.

Then the tbllowing statesments are immediate:

1) each element of 9' is convex, circled and

radial at 0,

(2) U1@V1 nU,@V2:::;) (Ul '~"U2:?(VI nV2),

(3) for all non-zero scalar a, the convex circled

extension of a(U@V) is agam an element of fT.

Thus fT is a locally convex vedor topology for

EQ9F.

Suppose that f is a contimlous bilinear map­

ping of Ex F into a third locally convex space G.

Then there exist U and V neighborhoods of 0 in

E a...'1d F resp. such that feu, V) cW where W
is a neighborhood of 0 in G. Then n(f) (U®V)

=/CU, V)cW. This shows the continuity of n

(I). The converse is also immediate.

Let fT' be another locally convex topology for

E@F winth the above property.

Taking G=(E@F, 9"'), we get that 9" is finer

than !T.

Again exchanging the role of !T and fT', we get

the uniqueness of such a topology.

The algebraic tensor product E®F, equipped

with the above topology is called the "projectivp.

teasor product" and will be denoted by E®IF.
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Considering the above proposition, we get the

followirg immediately.

PROPCSITION 2. 4. The topology of E®,F is

the strongest locally convex topology for which

the cannonical bilinear mapping of Ex F onto

E®,F is continuous.

PROPOSITION 2. 5. If E and F are Hausdorff

spaces, then so is E®,F.

Proof. Let z* be a non-zero element of E®,F.

Then z*=i; xlay. for x.EE and y.EF. Without
1=1

less of generality we may assume that {x.} and

{Y.} are linear independent sets in E and F resp.

Let V be a circed neighborhood of 0 in F

such that YI E;V. If YI belongs to the dosure of

SIj"J3S::'S;'" the span of {y,} (i=2, ...• n), then there

exist scalars a,'s such that t am, belongs to fI,+.-2
V. This contradicts to the linear independence of

the set {tI.}. Hence 0 does not belong to the

closure of y,-s(YI)zs;.s:.. Then by Separation

Theorem there exists a continuous linear time­

tional g strongly separating {YI} and s{fI'}. that

is, 19(fI,)! >sup {/g(y) I} yEsIJI.)

We may assume that g(YI» 1 and then g('IJ,)

=O(2::;;:iSn).

Similarly we can select a continuous linear
functional I on E such that I(x,)>1.

-f we set U={xEE:I/(x)/::;;:l}and V={yEF:

Ig(y) IsI). then IzCf.g)l::;;:l for all zEU®V

and Iz* Cf. g) 1>1.
Let's denote by E®,F the completion of E®F

with the projective tensor product topology.

PROPOSITION 2. 6. If E and F are metrizable,

then E0IF is a Frechet space. If E and Fare

metrizable barrelled spaces, then so is E®,F.

Proof. Since E and F are metrizable, there

exist CIf and "f/ countable local bases for E and

F resp. Then clearly {D®V: DE"'. VE"f/} is

countable, whence E®,F is metrizable. Thus its

completion is a Frechet space.

Let's show the latter assertion.

A locally convex space E is a barrelled space

iff each w (E*. E) -bounded subset of the adjoint

E* is equi--continuous. By (PROPOSITION 2. 3)

the space of all continuous bilinear fonns on
Ex F is isomorphic to the space of all continuous

linear forms on E®,F.

Hence it suffices to show that every pointwise

bounded family of continuous bilinear fonns on

Ex F is equi--continuous. •

Let {f,: iEI} be the family. For each closed

convex circled neighborhood W of 0 in the scalars

and for each element x of E, W".= {y : I. (x, y) E

W} is a barrel in F for any i of I. Whence
{y;~(x. y)EW. ",ViEI} is closed. convex and

circled, Since {I, : i El} is pointwise bounded,

given (x. y) E Ex F there exists kd >0 such that

{~:iEl}ck",.{f:If(%.y)1 sI}. Let y be any

element of F and let r be a positive real number

such that r k",.EW.

Then for each element i of I. 11.(x, ry)1

=r II. (x, y) ISrk.-

Since W is circled, this means that {y; I.(x, 11)

EW~ iEI} is radial at 0. Thus {y: f. (x. y) EW

~iEI} is a barrel in F. whence if Y..-+O. {f.(x,

y,J : iEl, n=1. 2, ...} is bounded. Therefre {x: f.
(x, y,J EW. ~iEI, n=l. 2, •••} is radial at 0.
and it follows that it is barrel in E.

If x.-+O, {fi(x... Y..): iE I, n=l, 2, ...} is b0un­
ded. Thus the assertion follows.

CHAP. 3 TOPOLOGICAL TENSOR

PRODUCT OF BI-EQUICONTINUOUS

CONVERGENCE

Suppose that E and F are locally convex Haus­
dorff spaces with adjoints E* and F* resp.

For each :t E E and yE F. the bilinear func­
tional x®y on E' x F' defines by restriction a

bilinear functional on E* x F*, which is separately'

continuous when E* and F* have their w*-topO­

logy.

On the space of all separately continuous bili-
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near functionals on E* x F*, the topology of

unifonn convergence on products of equi-conti­

nuous subsets of E* and E* is a vector topology.

The relative topology for E0F is called the

"topology of bi-equicontinuous convergence" and

the tensor product space equipped with this

topology will be denoted by E0?F.

PROPOSITION 3. 1. The topology of bi-equi­

continuous convergence is the topology of uni­

fonn convergence on the sets DO 0Yo, as D and

Y run through local bases for E and F resp.

Proof. Let W be a neighborhood of 0 in E02

F. Then there exist A and B equicontinuous

subsets of E* and F* resp. such that

w= {x(8)y:1 <x, A> <y, B> I:::;:; I}. Since A and
Bare equicontinuous, there exist D and Y ele­
ments of local bases for E and F resp. such that

AcDo and BeYo. Hence A0BeDo 0Yo •

Thus W is a neighborhood of 0 in the topology

of unifonn convergence on the sets DO 0Y.o

Conversely for alI D and Y elements of local

bases for E and F respectively, DO and YO are

equi-continuous in E* and F* respectively so that

the assertion follows.

PROPOSITION 3. 2. E®2F is a Hausdorff

space.

Proof. Let x*®y* be a non-zero element of

·E02F. Then there exist U and V, closed convex

.neighborhoods of 0 in E and F respectively such

that x*~ U and y* Et V.

Let W= {x®yEE02F:! <x, DO > <y, yo> 1:::;:;1}.
Then x*®Y*I!!i.W.
If otherwise, I<x*, DO> 1:::;:;1 or I<y*, y o i::;:l, say

I<x*, DO> /:::;:;1. Then XEDo, which is identical

with D since E is locally convex.

PROPOSITION 3. 3. The topology of bi-equi­

continuous convergence is weaker than the pro­

jective tensor product topology.

Proof. If A and Bare equicontinuous subsets

in E* and F* resp., then there exist D and Y

elements of local bases for E and F resp. such
that AeDo and BeVo.

Hence Ao:::JDo ° and Bo:::JVo 0. Since E and F

are locally convex, we may assume that D and

V are closed and convex.

In this situation we have already fou.lld that

DO o=U and VO o=V. Thus Ao:::JD and Bo:::JV,

so that A o0B o :::J D®V. Now the assertion

follows.
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