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INTRODUCTION

In the present paper the author made an at­

temption to apply properties of ordered linear

spaces to complex B* algebras with identity.

Consequent results are collected in Chapter n.
In his research the author found out that the

set of those positive fmctionals giving irreducible

*-representations for B* algebras (denoted by

Ext P in this paper) is a good bridge connecting

ordered spaces with B* algebras.

In Theorem 2. 1 an extension, in some aspect,

of the Gelfand-Naimark representation to a non­

commutative B* algebra is made. Theorem 2.2
originally motivated by Theorem 1. 2 characteri­

zes those complex *-algebras whose hermitian

subspaces with the tYPical positive cones are M

spaces with order unit under suitable. norms. In
Theorem 2.3 the Kadison's problem (cf. (3» is

dealt with in the case of commutative complex

B* algebras with identity.

The author interposed Chapter I to set up the

notations and terminologies to be used throughout

and some basic known results. All the other

unexplained notations and terminplogies will be

found in (1) and (2). Notice that the definitions

of an ordered Banach space and a GM space

are slightly modified from the original ones.

CHAPTER I. PRELIMINARIES

Let ex, K) be an ordered linear space where

X is a real linear space and K is a positive cone

in X. We denote by K* the set of all positive

functionals on X and by cl K the cloure of K in
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the strongest locally convex topology for X.

If ex, K) is an ordered linear space such that

cl Kn (-cl K) = to} and K has an internal point

e, then

11:r U= inf{t >0: -te:::;::rste}

is a norm in X. The norm 11:r 11 is monotone in

the sense that for any elements :r and y of K
11 % ~ '2 11 Y 11 if x'2y. ~ x I can also be defined by

the equation

/Ix 11 = sup{lf(x) I: fEK*, f(e)=l}.

The norm 11 x 11 is called a NORM INDUCED BY

e.
An ordered Banach space ex, K, 11 x ~ ) is an

ordered linear space ex, K) with a complete

norm 11 xII.
Definition. _\~: ::;:~2~'c,~ E.:'.::ach space ex, K,

11 x /0 is a GM :3?_':.'::'::: :: ~nd only i: cl Kn (-cl

K) = to} and the L.8r.:: :•.:.. -.:;.:n be induced by

an internal point of K.
Let ex, K, 11 x ID be an ordered Banach space.

The largest element in the unit sphere of X, if

such exists, is called an ORDER UNIT. Remark

that for a GM space the internal point of K
inducing the GM space norm is a unique order

unit.

Let ex, K, 11 xII) be a GM space with order

unit e. For any f in K* f is bounded and 11 f ~ =
f(e). We denote by P the subset of the adjoint

space of X defined as

P=UEK*:f(e):::;: 1}.

P is a compact convex subset of the adjoint

space of X in the weak X topology. We denote

by Ext P the set of nonzoro extremal points of

P with the weak X topology.
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If an ordered linear space (X. K) is a vector

'lattice, the abE?olute value of x in X shall be

-denoted by Jx I.
Let (Xi' K;) (i=l, 2) be vector lattices. A linear

-map e of XI into Xz is called a LATrICE
HOMOMORPHISM if 6(xVV)=6(x)Ve(V). In

the case Xz is the lattice of real numbers, 6 is

·called a LATrICE FUNCTIONAL.

Definition. An ordered Banach space (X, K,

ox n) is an M SPACE if ex. K) is a vector lattice,

'B x Uis a lattice norm (i. e., for any elements x

,and V of XII xU ~ hUifl xl ~ IV /) and BxVyU
-= 11:1: IlV II V H for any elements x and V of Ko

Let S be a topological space. Let C(S) he the

:algebra of all bounded complex valued continu­

'OllS functions on S and C* (S) be the correspond­

iing algebra of real valued functions. These are

:Banach algebras under the norm nn=sup{//(w)I

:: wES}. We can order C* (S) by taking the po&­

'tive cone to be the set of all functions which are

everywhere nonnegative. If we are concerned

with those algebras, the conjugate invohrtion and

previously defined norm and order will be given

;implicitly.

Let A be a complex "'-algebra. Let H be a real

linear space of hennitian elements of A. Let Ko
be the cone in H consisting _of all elements that

-can be expressed as a finite sum of the farm

I;Xi*X" We denote by K the set cl. Ko. We

make the usual confusion between real valued

.functionals on H and complex valued functionals
'on A which are real on H.

Definition. If (X., IQ (i=1, 2) are ordered

,linear spaces, a li:oear isomorphism 6 of XI into

X z is an ORDER ISOMORPHISM if and only if
t6(KI)=6(X1)(1Kzo If A.. (i=1, 2) are complex B'"

algebras and CIL. K;) are _the corresponding

<lrdered linear spaces of hermitian elements, a

linear isomorphism. e of AI into Az is an ORDER

ISOMORPHISM if and only if {J is an order

isomorphism of (HI' KI) into (Hz, Kz).
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Theorem 1. 1. (Kakutani) Each M space (X, K,

Bx /I) with order unit is isometric lattice-isomor­

phic, under evaluation, onto C* (S) where S is

the set of all lattice functionals of norm one.

Theorem 1. 2. (p. E. Miles) Let A be a com­

plex *-algebra with identity e. Then A admits a

complete B* norm if and only if (H, K) is a

GM space tmder the norm induced bye. In this

case the GM space norm coincides with the B*

norm restricted on H.

CHAPTER n. THEOREMS ON THE
ORDER IN B* ALGEBRAS

Theorem 2. 1. Let A be a complex B* a1ge­

bra with identity e. Then A is isometric order­

isomorphic into C(Ext P). If A is commutative,

then A is isometric *-isomorphic onto C(Ext P).

Proof. Notice that Ext P is well defined by

Theorem 1.2-

If A is commutative, then Ext P is the carrier

space of A--see, e.g., (1; 4). The Gelfand­
Naim.aIk representation of A is the required

isometric ......isomorphism.

Remark. that the proof ofiCbe first part of the

Theorem will be completed if we show that H
is isometric order-isomorphic into C* (Ext P).

Let (J: x-.+x be the evaluation map of H into

C*(Ext p). then Hx0=sup{ II(x) j:/EExt P}and

by Theorem 1.2 OXg =sup {I!(x) I:/EK*, I(e) =
1}. Since for any element I in Ext P I(e) =UfI

= 1, UxU::;;; Ux /l. Conversely let I be any positive

functional such that I(e) =1. Then I is a mem­

ber of P. By the Klein-Milm.an Theorem for any

x of H and positive real number El there exist
positive real numbers alf azo ......, a,., and extremal

points of P 11, lzo· ..•..,!.. such that Ea,=O and
I/(x) -I;aJ.(x) I <e.

Hence I/{x) I <l.:a,I/.(:r;) I+e

::;;; 11 x0 +e.
This implies Bx U<Ri H+e.
Since £ is arbitrary, it follows that DxII::;: 11 xn.



Therefore 11 x H = 11 £ B and e is isometric.
It is clear that for any element x of K x is

nonnegative on Ext P. Conversely let x be an

element of H such that x is nonnegative on Ext
P. Then for any positive functional f on H x(I)

d:O since lit ~-lf lies in P and by the Klein­

Milman Theorem IIfll-If is contained in the

weak closure of the convex extension of the set

of extremal points of P. It can be proved--see,

e.g.. (3)-that the set{x:f(x) "2:0 for all fEK*}

is the closure of K in the strongest locally con­

vex topology. Since K is closed in this topology,

1: lies in K and () is an order isomorphism.

Q. E. D.

Lemma 1. Let ex. K, 11 x 11) be an ordered

Banach space. Then ex, K, 11 x ij) is an M space

with order unit if and only if ex, K) is a vector

lattice and ex. K, 11 x 11) is a GM space.

Proof. The neccessity follows immediately

from Theorm 1. 1.

Now assume that ex, K, 11 x 11) is a GM space

with e as the norm-inducing order unit and that

ex, K) is a vector lattice. Then -y~x~y if and

only if IxI~ Iy 1. Rance the GM space norm can

be difined as 11 x 11 =inf{t) 0: Ix I~te} and so 11 x 11

= IIY i! if IxI=Iy I. Since IIx 11 is monotone, 11 x 11 is
a lattice norm. It can be easily verified that 11 xV

y D= 11 x IIVII y 11 for any element x and y in K.
This completes the proof of sufficiency.

Q. E. D.

Lemma 2. Let ex. K, 11 x f1) be an M space
with order unit e and f be a nonzero functional

in P. Then following conditions are equivalent.

1) f is a lattice functional and fee) =1.
2) For any element g in P such that os:,g~f

it is tore that g g(e)f.

(3) f is an element of Ext P.

Proof. This is the direct application of Lemma
1 and (2; 24-1 and 24-2).

Lemma 3. Let A be a complex B* algebra

with identity e such that (H, k) is a vector
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lattice. Let Al be any closed subalgebra contaii"1­

ing e. Then for any fin Ext P the restriction f"
of f on HI is an element of Ext PI'

Proof. Notice that <H, K) and CHu KI) are

M spaces with e as order unit under the B*

norm.

Since (H, K) is a vector lattice, its order dual

(K* - K*, K*) is a vector lattice. Let go be an

element in PI such that O~o~fo- There exists

an element g' in P which is an extension of go

-e. g., see (1; 4-7-11). Let g-g'Af. Then g

is also an extension of go and contained in P.

Since O~~f and f is in Ext P, g g(e)f by

Lemma 2. Hence go=go(e)fo and it follows that

fo is an element of Ext PI'
Q. E. D.

Lemma 4. Let A be a comhlex B* algebra

with identity e such that CH, K) is a vector

lattice. Then A is commutative.

Proof. Let h be any'element in H and Al be

the closed subalgebra generated by h and e. Then

AI is commutative and *-isornorphic to C (Ext

PI) by Theorem 2. 1. Hence by the previous­

Lemma 3 for any f in W P it is tore that

f(JrZ) = (f(h» 2.

Let f be any element in Ext P. Remember that

f(x)=f(x*), Let x be an element of A such

that f(x) =0. x can be written x=h+ ik where

hand k are in Ho Since f(x) =0 and f(h) and
f(k) arerea1, f(h)=f(k)=O. Hence f(1z2)=f(lr)

=0. On the while since f(h+k) =0,

f«h+k) 2) f(hk+kh) =0.

This shows that f(hk) =f(kh) =p i where fJ is a

real number. Suppose that p*O. Then

f(x*x) =if(hk-kh) =i(f(hk) +f(hk») = -2fJ.
Sip.ce f(x*x) d:O, f3 must be negative. However,

if we set y=k+ ih, then f (y*y) =2 fJ <0 which

is a contradiction. Hence fJ=O and f(x*x) =0.

Since If(x)12~f(e)f(x*x) for any x in A, it fol­

lows that f(x*x) =0 if and only if f(x) =0 for

any f in Ext P.
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Now for any fin ExtP let L(I)={x:f(x*%)

=O}. Let x~Tx be the *-representation ass0­

ciated with f on the Hilbert space A-L (I) such

that f(x) = (T,.e', e') where e' is e+L(f) (cf. 1;

4-3-7). By the previous discussion L(I) is the

kernel of f and hence A-L(f) is one dimensionaL

For any x and y in A let T.,.e'=k' and T"e'=

fJJ!'. Then

T .."e'=il.fd!'=T",.,.e'
and it follows that f(xy) =f(yx).

Above discussions show that the isometric

order isomorphism of A to C(Ext P) given as in

Theorem 2. 1 is an algebraic isomorphism from

which the commutativity of A directly follows.

Q. E. D.

Remark. In Lemma 4, the assumption that

(H, K) bea vector lattice is a little superfluous.

In fact, equivalence of 2) and 3) in Lemma 2

holds for any GM space. Lemma 3 is true if

(H. K) has the decomposition property only.

Hence Lemma 4 holds ture if (H. K) has the

decomposition property. All the proofs are unal­

tered in these cases.

Theorem 2. 2. Let A be a complex *-algebra

with identity e. Then A is a commutatative B*
algebra under a suitable norm if and only if H

has a norm making (H. K) into an M space

with e as order unit. In this case the M space

norm coincides with the B* norm restricted on

lL

Proof. Let A be commutative B* algebra with

identity e. By Theorem 2. 1 A is isometric

*-isomorphic onto C(Ext P) and hence CH. K) is

order-isomorphic onto C* (Ext P) under the eva­

luation map x-+x. Since fee) = I for any f in
Ext P, c* (Ext P) is clearly an M space with e

as order unit. Therefore the B* norm restricted

on H makes CH. K) into an M space with e
acting as order unit.

Conversely let I x Ube the norm making CH. K)

into an M space with e acting as order unit. By

the previous Lemma 1 (H. K. I%I) is a GM

space and (H, K) is a vector lattice. For any

element y of A define a norm ~ y 11 such that

Uy ~ 1
Z = 11 11*11 U. They by Theorem 1.2 the norm

"Y 1/1 is a complete B* norm for A which coinci­

des with the norm 11 'Y lion H. Moreover, since

(H. K) is a vector lattice, by Lemma 4 A must

be commutative.

Q. E. D.

Theorem 2. 3. Let A.(i=l, 2) be commutative

complex B* a1gebras with identities e. and ca, IQ

be the corresponding ordered linear spaces of

hermitian elements of A... Let 6 be an order iso­

morphism of (HI' K1) onto (H2o Kz) taking el

onto er Then the linear extention of (J to

9 :A1 -+Az

is the isometric *-isomorphism of Al onto Azo

Proof. Since a B* algebra has a unique B*

norm, isometry follows immediately once *-iso­

morphism is proved.

Remark that since a are subalgebras of A.,

the proof will be completed if we show that 6 is

an algebraic homomorphism.

Let a' be the dual spaces of a and 9':Ha'-+­
HI' be the dual map of (J defined as (J'fl(x) =/z
(9x) for all x in HI and fz in Hz'. Then since 9

is an order isomorphism of HI on Hz taking e.
onto e20 it follows easily that 6' (Pz) =PI and

(J' (Ext Pz) =Ext PI.

Now by Theorem 2. 1. (lL, KJ are algebraically

isomorphic onto C* (Ext P;) under the evaluation

map %r+'x.. If Xl and Y1 are arbitrary elements

of HI, then for any element fz in Ext Pz
~

(J (X1Y1) (fa) = fz «(J (%lYl» =(J'fa (XIYl)
..............

=X1Y1 (9'fl) =Xl (8'fz)f}1 (6'fz)

=(J'fz (XI) (J'fz (Y1) fl (9X1) f2 (6111)
---.. --. ---......-.......

=6xI ([z) ()YI (/z) = (6X1 ()Y1) (f2)-----= (6X1) «()Y1) (fz)

Hence (j (X1Y.) = (9X1) (9xz) and (J is an algebraic

homomorphism.

Q. E. D.
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Remark. The previous proof is based on the

fact that the carrier space of a commutative

comlAex B* algebra with identity is completely

detelmined by the order and linear structure of
the algebra.
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