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A NOTE ON THE ORDER IN B* ALGEBRAS

INTRODUCTION

In the present paper the author made an at-
temption to apply properties of ordered linear
spaces to complex B* algebras with identity.
Consequent results are collected in Chapter 1I.

In his research the author found out that the
set of those positive functionals giving irreducible
*-representations for B* algebras (denoted by
Ext P in this paper) is a good bridge connecting
ordered spaces with B* algebras.

In Theorem 2.1 an extension, in some aspect,
of the Gelfand-Naimark representation to a non-
commutative B* algebra is made. Theorem 2.2
originally motivated by Theorem 1.2 characteri~
zes those complex *-algebras whose hermitian
subspaces with the typical positive comes are M
spaces with order unit under suitable.norms. In
Theorem 2.3 the Kadison’s problem (cf. (3)) is
dealt with in the case of commutative complex
B* algebras with identity.

The author interposed Chapter I to set up the
notations and terminologies to be used throughout
and some basic known results. All the other
unexplained notations and terminclogies will be
found in (1) and (2). Notice that the definitions
of an ordered Bamach space and a GM space
are slightly modified from the original ones.

CHAPTER 1. PRELIMINARIES

Let (X, K) be an -ordered linear space where
X is a real linear space and K is a positive cone
in X. We denote by K* the set of all positive
functionals on X and by cl K the cloure of K in
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the strongest locally convex topology for X.

If X, K) is an ordered linear space such that
d KN (—d K)={0} and K has an internal point
¢, then

| 2] = inf{t > 0: —fe<L2<te}
is a norm in X. The norm | x[/is monotone in
the sepse that for any elements x and y of K
Jxl>fylif x>y, Iz} can also be defined by
the equation

Izl =sup{| f(): fEK¥, fle)=1]}.
The norm | x|/is called a NORM INDUCED BY
e

An ordered Banach space (X, K, |x]l)is an
ordered linear space (X, K) with a complete
norm | z{.

Definition. A criere) Panach space X, K,
fxl) isa GM SFLCZ F and only U KN (—dl
K)={0} and the ror— ..,
an internal point of K. )

Let (X, K, fx[) be an ordered Banach space.
The largest element in the unit sphere of X, if
such exists, is called an ORDER UNIT. Remark
that for a GM space the mternal point of K
inducing the GM space norm is a unique order
unit. '

Iet X K, Jx]) be a GM space with order
unit e. For any f in K* fis bounded and | f| =
f(@). We denote by P the subset of the adjoint
space of X defined as

P={fcK*: f(e&) < 1}.
P is a compact convex subset of the adjoint
space of X in the weak X topology. We denote
by Ext P the set of nonzoro extremal points of
P with the weak X topology.

cun be induced by

—
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If an ordered linear space (X, K) is a vector
lattice, the absolute value of x in X shall be
-denoted by |x]|.

Let (X, K)) (i=1, 2) be vector lattices. A linear
‘map 6 of X, imto X, is called a LATTICE
"HOMOMORPHISM if 8(zVy)=6(x)Vé(y). In
‘the case X, is the lattice of real numbers, 9 is
-called a LATTICE FUNCTIONAL.

Definition. An ordered Bamach space (X, K,
Ix1)is an M SPACE if (X, K) is a vector lattice,
{x)is a lattice norm(i. e, for any elements x
and y of X x> yfiflxl>1y]) and | xVy|
= | x[V]y] for any elements x and y of K.

Let S be a topological space. Let C(S) he the
‘algebra of all bounded complex wvalued comtinu-
-ous fimctions on S and C*(S) be the correspond-
ing algebra of real valued functions. These are
Banach algebras under the norm [l f J==sup {f ()|
wES}. We can order C*(S) by taking the posi~
tive cone to be the set of all functions which are
everywhere nonmegative. If we are concerned
with those algebras, the conjugate nvolution and
previously defined norm and order will be given
;implicitly.

Let A be a complex *-algebra. Let H be a real
‘Tinear space of hermitian elements of A. Let K,
be the cone in H consisting of all elements that
«can be expressed as a finite sum of the farm
Xx*1. We denote by K the set d K, We
mazke the usual confusion between real valued
functionals on H and complex valued functionals
‘'on A which are real on H.

Definition, I (X, K) (=1, 2) are ordered
linear spaces, a linear isomorphism ¢ of X, into
X, is an ORDER ISOMORPHISM if and only if
6K =0(X)) NKp If A;(i=1,2) are complex B*
algebras and (H, K) are the corresponding
ordered linear spaces of hermitian elements, a
linear isomorphism 6 of A, into A,is an ORDER
ISOMORPHISM if and only if @ is an order
isomorphism of (H,, K;) into (H, K,).
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Theorem 1. 1.(Kakutani) Each M space X, K,
fx{) with order unit is isometric lattice-isomor-
phic, under evaluation, onto C*(S) where S is
the set of all lattice functionals of norm one.

Theorem 1. 2. (P.E. Miles) Let A be a com~
plex *-algebra with identity e. Then A admits a
complete B* norm if and only if (H, K) is a
GM space under the norm induced by e. In this
case the GM space norm coincides with the B*
norm restricted on H.

CHAPTER 1. THEOREMS ON THE
ORDER IN B* ALGEBRAS

Theorem 2. 1. Let A bea complex B* alge-
bra with identity e. Then A is isometric order-
isomorphic into C(Ext P). If A is commutative,
then A is isometric *-isomorphic onto C(Ext P).

Proof. Notice that Ext P is well defined by
Theorem 1.2.

If A is commutative, then Ext P is the carrier
space of A——see, e.g., (1; 4). The Gelfand-
Naimark representation of A is the required
isometric *-isomorphism.

Remark that the proof oftthe first part of the
Theorem will be completed if we show that H
is isometric order-isomorphic into C*(Ext P).

Let ¢: x—>% be the evaluation map of H into
C*(Ext P). then | 2| =sup{| f(x)]:f€Ext P}and
by Theorem 1.2 | 2§ =sup {If (x)i: fEK*, flO)=
1}. Since for any element /' in Ext P f&)=[f}
=}, 2] <zl Conversely let f be any positive
fimctional such that f(e)=1. Then f is a mem-
ber of P. By the Klein-Milman Theorem for any
x of H and positive real oumber g there exist
positive real munbers a;, @y, +++++ » Oy and extremal
points of P fy, faos-y f such that Je=0 and
Lf(x) —Za.fi(x) | <e.

f(x) ] <Xa;lfi(x) | +e
LIzl +e
This implies [x[<JZ] +e.
Since & is arbitrary, it follows that Jxj <[z}

Hence

I



Therefore | xj=1{ 2] and 6 is isometric.

It is clear that for any clement x of K £ is
nonnegative on Ext P. Conversely let 2 be an
element of H such that % is nonnegative on Ext
P. Then for any positive functional f on H £(f)
>0 since [fIf hes in P and by the Klein-
Milman Theorem Jf[I"Yf is contained in the
weak closure of the convex extension of the set
of extremal points of P. It can be proved——see,
. 8. (3)——that the set{x:f(x) >0 for all fEK*}
is the closure of K in the strongest locally con-
vex topology. Since K is dosed in this topology,
1 lies in K and @ is an order isomorphism.

Q. E. D.

Lemma 1. Let X, K, | xl) be an ordered
Banach space. Then (X, K, #x}) is an M space
with order unit if and only if (X, K) is a vector
lattice and (X, K, [ z!) is a GM space.

Proof. The mneccessity follows immediately
from Theorm 1.1.

Now assume that (X, K, fx]) is a GM space
with ¢ as the norm-inducing order unit and that
X, K) is a vector lattice. Then —y<x<y if and
only if |xz]<1yl|. Hance the GM space norm can
be difined as | x| =mof{f> 0: x| <te} and so || x|
= |y itif |x]=]yl. Since |z} is monotone, | x| is
a lattice norm. It can be easily verified that | 2V
yl=|[x|Vly) for any element x and y m K.
This completes the proof of sufficiency.

Q. E. D.

Lemma 2. Let X, K, llzf) be an M space
with order mit e and F be a nonzero functional
in P. Then following conditions are equivalent.

1) f is a lattice functional and f{g)=1.

2) For any element g in P such that 0<g<f
it is ture that g=g(e)f.

(3) f is an element of Ext P.

Proof. This is the direct application of Lemma
1 and (2; 24-1 and 24-2).

Lemma 3. Let A be a complex B* algebra
with identity ¢ such that (H, %) is a vector

ARBEGE BB

lattice. Let A, be any closed subalgebra contain-
ing e. Then for any f in Ext P the restriction f,
of f on H, is an element of Ext P,

Proof. Notice that (M, K) and (H,, K,) are
M spaces with ¢ as order unit under the B*
nOorm.

Since (H, K) is a vector lattice, its order dual
(K*—-K*, K*) is a vector lattice. Let g, be an
element in P, such that 0<go<f,. There exists
an element g’ in P which is an extension of g,
—e g see (1; 4-7-11). Let g=g’'Af. Then g
is also an extension of g, and contained in P.
Since 0<g<f and f is in Ext P, g=g(e)f by
Lemma 2. Hence g,=g,(e)f, and it follows that
fs is an element of Ext P,.

Q. E. D.

Lemma 4. Let A be a2 comhlex B¥ algebra
with identity e such that (H, K) is a vector
lattice. Then A is commutative.

Proof. Let k be any ‘element in H and A; be
the closed subalgebra generated by k and e. Then
A, is commutative and *-isomorphic to C(Ext
P,) by Theorem 2. i. Hence by the previous.
Lemma 3 for any f in £xt P it is ture that
F@E) =)

Let f be any element in Ext P. Remember that
f(®)=F(x". Let  be an element of A such
that f(z)=0. x can be written x==h+{k where
h and k are in H. Since f(x)=0 and f(# and
f(k) are real, f(h)=f(k)=0. Hence f(K*)=f (k")
=0. On the while since f(h+k)=0,

F((h+k)®) =f(hk+kh)=0.
This shows that f(kk)==f(kk)==8{ where Bis a
real number. Suppose that 80, Then

f(x*x) =if (hk — kh) =1 (f (hk) + f (hk)) = —28.
Since f(x*x) =0, B must be negative. However,
if we set y=k+ih, then f(y*y)=28 <0 which
is a contradiction. Hence A=0 and f(x*x)=0.
Since | fF(X)P<Lf(e)f(x*x) for any x in A, it fol-
lows that f(x*x)=0 if and only if f(x)=0 for
any f m Ext P.
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Now for any f in Ext P let L{f)={x:f(x*x)
=0}. Let x»>Tx be the *-representation asso-
ciated with f on the Hilbert space A-L(f) such
that f(x)=(T,¢, &) where ¢ is e+L{(f) (cf. 1;
4-3-7). By the previous discussion L(f) is the
kernel of f and hence A-L(f) 1s one dimensional.
For any r and y in A let T.e/=2" and T,e/=
e’ Then

o' =Ae' =T,
and it follows that f(xy)=f(yx).

Above discussions show that the isometric
order isomorphism of A to C(Ext P) given as in
Theorem 2.1 is an algebraic isomorphism from
which the commutativity of A directly follows.

Q. E. D.

Remark. In Lemma 4, the assumption that
(M, K) bea vector lattice is a little superfluous.
In fact, equivalence of 2) and 3) in Lemma 2
holds for any GM space. Lemma 3 is true if
{H, K) has the decomposition property only.
Hence Lemma 4 holds ture i (H, K) has the
decomposition property. All the proofs are unal-
tered in these cases.

Theorem 2. 2. Let A be a complex *-algebra
with identity e. Then A is a commutatative B*
algebra under a suitable norm if and only if H
has a norm making (H, K) into an M space
with ¢ as order unit. In this case the M space
norm coincides with the B* norm restricted on
H.

Proof. Let A be commutative B* algebra with
identity ¢. By Theorem 2.1 A is isometric
*-isomorphic onto C(Ext P) and hence (H, K) is
order-isomorphic onto C*(Ext P) under the eva-
luation map z—%, Since f(e)= 1 for any f in
Ext P, C*(Ext P) is clearly an M space with e
as order unit. Therefore the B* norm restricted
on H makes (H, K) into an M space with ¢
acting as order umit.

Conversely let | x | be the norm making (H, K)
mto an M space with ¢ acting as order umit. By

the previous Lemma 1 (H, K, fxJ) is a2 GM
space and (H, K) is a vector lattice. For any
element y of A define a norm | yJ, such that
fyl:2 =y*yl They by Theorem 1.2 the norm
lwlh is a complete B* norm for A which coinci-
des with the norm [y [ on H. Moreover, since
(H, K) is a vector lattice, by Lemma 4 A must
be commutative.
Q. E. D.

Theorem 2. 3. Let A;({=1, 2) be commutative
complex B* algebras with identities ¢; and (H, K,)
be the cofresponding ordered linear spaces of
hermitian elements of A,. Let 6 be an order iso~
morphism of (H, K;) onto (H, K,) taking ¢
onto ¢, Then the linear extention of @ to

g:A,— A,
is the isometric *-isomorphism of A, onto A,

Proof. Since a B¥ algebra has a umique B*
norm, isometry follows immediately once *-iso-
morphism is proved,

Remark that since H; are subalgebras of A,
the proof will be completed if we show that 6 is
an algebraic homomorphism.

Let H/ be the dual spaces of H; and ¢':H,/—
H,’ be the dual map of 9 defined as 9'f,(x)=f,
(6x) for all x in H, and £, n H;'. Then since ¢
is an order isomorphism of H; on H, taking e,
onto ¢, it follows easily that ¢ (P;) =P, and
o' (Ext P,)=Ext P,.

Now by Theorem 2. 1. (H, K,) are algebraically
isomorphic onto C*(Ext P;) under the evaluation
map z>%. If z, and y, are arbitrary elements
of H,, then for any element f; in Ext P,

BCrwD) () =1, 0 Cen) =8'F ()
=’;!;!\ @f)=2.(0'f2) g9 1(0'f3)
=0'f;(2:)0'f: () =12 (0x,) > (6y1)
=0%, (f) 0 (f) = (Bm: 69) (fy)
i
= (6x,) (9y1) (f2)
Hence 6(xy,) =(6x,) (6x;) and 6 is an algebraic

homomorphism.
Q. E. D.



Remark. The previous proof is based on the
fact that the carrier space of a commutative
complex B* algebra with identity is completely
determined by the order and linear structure of
the algebra.
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