Bulletin of the Society of Naval Architects of Korea (대한조선학회지)
- Volume 3 Issue 1
- /
- Pages.33-45
- /
- 1966
- /
- 1225-1178(pISSN)
- /
- 2765-2858(eISSN)
Notes on the Thermal Stresses for Aluminum Superstructures
알미늄 선루선(船樓선)의 열응력분석(熱應力分布)
Abstract
The effect of thermal stress on a ship's hull is not considered to be serious by most naval architects. Frequently, however, cracking of hulls has been reported which occurred at sea while there were no external forces except the heat from the sun. Detailed investigations have been made of these reports and it has been reliably determined that the damage was initiated by solar heating. The author is not interested in all steel ship or in the applicability and validity of the formular itself, as it has already been proven by the experiments such as S.S. Boulder Victory. The author therefore proceeds directly to calculate the stress distribution on he hull and superstructure of the prototype model ship. These calculations are based on the experimental nonsymetrical temperature gradient data taken earlier on the Boulder Victory. The calculations were made principally to determine the extent of stresses which occurred on an all-steel ship in one case and secondly, those that occurred on a ship with a steel hull and an aluminum superstructure. From the calculations, the author expected the stress distribution of the two case would show distinctly different aspects, but the acquired results were very similar. Generally, at the point of junction of the steel hull and aluminum superstructure sharp peak stresses appeared. At the juncture of the superstructure and the main deck the ship with the aluminum superstructure registered almost 1000 psi more stress than did the ship with the all-steel construction. In the view of these findings, the author recommends to ship designers that pay particular attention to the point of junction of steel and aluminum plate. The author has proven that it is extremely important that a greater safety factor be used at the aluminum-steel junction point than at any other point. Although thermal effects cause high juncture-point stresses in all-steel ships, they are not nearly as critical as in ship constructed of two or more metals.
Keywords