CONHARMONIC TRANSFORMATIONS IN RECURRENT AND RICCI-RECURRENT RIEMANNIAN SPACES

By Yong-Bai Baik

§ 1. Introduction.

Let V_{n} be the n-dimensional Riemannian space, and $R_{i j k l}$ be the curvature tensor. V_{n} is recurrent if

$$
\text { (1. 1) } \quad R_{i j k l, r}=v_{r} R_{i j k l}
$$

where the index of the comma indicates the covariant derivative with respect to the metric $g_{i j}$ and v_{r} is a gradient.

However if it satisfies
(1. 2)

$$
R_{i j, r}=v_{r} R_{i j}, \quad\left(R_{i j}=R_{i j k}^{k}\right)
$$

V_{n} is a Ricci-recurrent. In this case $v_{r}=0$, i. e. $R_{i j k l, r}=0$ respectively $R_{i j, r}=0$, V_{n} is a symmetric and Ricci-symmetric Riemannian space respectively.
Contracting (1.2) by $g^{i j}$ we see that for a recurrent and Ricci-recurrent Riemannian space the relation

$$
\begin{equation*}
R_{, r}=v_{r} R \tag{1.3}
\end{equation*}
$$

is satisfied.
Mileva Prvanovitch [3] have studied projective and conformal transformations in recurrent and Ricci-recurrent Riemannian spaces. Y. Ishii [1] introduces the conharmonic transformation in a Riemannian space, and the auther have studied relations between subgroups of a conformal transformation group.

The present auther wishes to study the conharmonic transformations in recurrent and Ricci-recurrent Riemannian spaces.

§ 2. Conharmonic trantformation.

We consider a conformal transformation

$$
\text { (2. 1) } \quad \bar{g}_{i j}=e^{2 \sigma} g_{i j}
$$

of the fundamental tensor $g_{i j}$, were σ is a scalar function. It is well known that, for a conformal transformation, we have

$$
\begin{equation*}
\overline{\left\{{ }_{i j}^{h}\right\}}=\left\{\left\{_{i j}^{h}\right\}+\sigma_{, j} \delta_{j}^{h}+\sigma_{, j} \delta_{i}^{h}-\sigma_{,}{ }^{h} g_{i j}\right. \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{R}_{i j k}^{h}=R_{i j k}^{h}+g_{i j} \sigma_{k}^{h}-g_{i k} \sigma_{j}^{h}+\sigma_{i j} \delta_{k}^{h}-\sigma_{i k} \delta_{j}^{h}, \tag{2.3}
\end{equation*}
$$

where
(2. 4)

$$
\sigma_{i j}=\sigma_{, i j}-\sigma_{, i} \sigma_{, j}+\frac{1}{2} \sigma_{,}{ }^{a} \sigma_{, a} g_{i j}
$$

Let A be a harmonic function which is defined by

$$
\begin{equation*}
g^{i j} A_{. i j}=0 \tag{2.5}
\end{equation*}
$$

in an n-dimensional ($n>2$) Riemannian space V_{n}, where , i denote covariant differentiation with respect to the metric tensor $g_{i j}$, A harmonic function does not in general transform into a harmonic function by a conformal transformation. A conformal transformation is said to be conharmonic one if there exist a conformal transformation such as a harmonic function is transformed into a harmonic function. Evidently these transformations form a subgroup of the conformal transformation group. As is weel-known, the conformal transformation (2.1) to be conharmonic is that there exist a scalar function such that

$$
\begin{equation*}
\sigma_{p}^{p}=g^{i j} \sigma_{i j}=\sigma_{, p}^{p}+\frac{1}{2}(n-2) \sigma_{, i} \sigma_{,}^{i}=0 . \tag{2.6}
\end{equation*}
$$

Contracting (2.3) with respect to the indices h and k, we have

$$
\begin{equation*}
\bar{R}_{i j}=R_{i j}+(n-2) \sigma_{i j} \tag{2.7}
\end{equation*}
$$

By means of

$$
\begin{equation*}
\bar{g}^{i j}=e^{-2 \sigma} g^{i j}, \tag{2.8}
\end{equation*}
$$

the scalar curvature is given by

$$
\text { (2. 9) } \quad \bar{R}=e^{-2 \sigma} R \text {. }
$$

From (2.1) and (2.9), we obtain an invariant relation

$$
\begin{equation*}
\bar{g}_{i j} \bar{R}=g_{i j} R \tag{2.10}
\end{equation*}
$$

We have seen that (2.10) is the necessary and sufficient condition in order that the conformal transformation (2.1) be conharmonic.

From (2.6), we find
(2. 11)

$$
g^{i j} \sigma_{, i j}=\sigma_{, p}^{p}=\frac{2-n}{2} \sigma_{, p} \sigma_{,}^{p} \leqq 0, \quad(n \geqq 2)
$$

In a compact Riemannian space with positive definite metric, making use of the
theorem of Hopf-Bochner [6] we have

$$
\text { (2. 12) } \quad \sigma=\text { const. }
$$

Thus we have
THEOREM 1. In a compact Riemannian space with positive definite metric, the conharmonic transformation is a homothetic.

Next, we shall deduce some identities which are useful in the later sections.
Solving (2.7) for $\sigma_{i j}$ and analogous expressions $\sigma_{i k}, \sigma_{k}^{h}$ and σ_{j}^{h} being substituted to (2.3), then we obtain

$$
\begin{equation*}
\bar{C}^{h}{ }_{i j k}=C^{h}{ }_{i j k}, \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{h}{ }_{i j k}=R_{i j k}^{h}+\frac{1}{n-2}\left(\delta_{j}^{h} R_{i k}-\delta_{k}^{h} R_{i j}+g_{i k} R_{j}^{h}-g_{i j} R_{k}^{h}\right), \tag{2.14}
\end{equation*}
$$

which is invariant under a conharmonic transformation. Contracting (2.14) with respect to the indices h and k, we obtain

$$
\begin{equation*}
C_{i j}=\frac{1}{2-n} g_{i j} R \tag{2.15}
\end{equation*}
$$

which is also invariant under a conharmonic transformation.
The conformal curvature tensor of Weyl may be expressed by

$$
\begin{equation*}
W_{i j k}^{h}=C_{i j k}^{h}-\frac{1}{n-1}\left(\delta_{k}^{h} C_{i j}-\delta_{j}^{h} C_{i k}\right) \tag{2.16}
\end{equation*}
$$

§ 3. Recurrent Riemannian spaces.

In this section, we shall obtain a necessary and sufficient codition that a recurrent Riemannian space be transformed into a recurrent Riemannian space by the conharmonic transformation.

If the spaces V_{n} and V_{n} are recurrent Riemannian spaces, then from the definition, we get
(3. 1) $\quad C_{i j k, l}^{h}=v_{l} C_{i j k,}^{h}$
(3. 2) $\quad \overline{\boldsymbol{C}}^{h}{ }_{i j k / l}=\hat{v}_{l} \overline{\boldsymbol{C}}^{h}{ }_{i j k}$,
where $/ l$ denotes covariant differentiation with respect to the metric tensor $\vec{g}_{i j}$ in $\widetilde{\nabla}_{n}$.

Differentiating (2.11) covariantly and taking account of (3.1) and (3.2), we have
(3. 3)

$$
\begin{gathered}
\bar{C}_{i j k}^{h} v_{l}=C_{i j k}^{h} v_{l}-2 C_{i j k}^{h} \sigma_{l}+C_{i j k}^{a} \sigma_{a} \delta_{l}^{h}-C_{i j k}^{a} \sigma_{a l}^{h} g_{a l}-C_{l j k}^{h} \sigma \\
-C_{i l k}^{h} \sigma_{j}-C_{i j l}^{h} \sigma_{k}+\left(C_{a j k}^{h} g_{i l}+C_{i a k}^{h} g_{j l}+C_{i j a}^{h} g_{k l}\right) \sigma^{a}
\end{gathered}
$$

On the other hand, dieferentiating (2.9) covariantly, we get
(3. 4) $\quad \bar{R}_{/ l}=e^{-2 \sigma}\left(R_{, l}-2 R \sigma_{l}\right)$.

In a recurrent Riemannian space, (1.3) hold good, hence we get
(3. 5) $\quad v_{l}=v_{l}-2 \sigma_{l}$.

Thus, (3.3) can be written
(3. 6)

$$
\begin{aligned}
& C_{i j k}^{a} \sigma_{a} \delta_{l}^{h}-C_{i j k}^{a}{ }_{i j} g_{a l}-C^{h}{ }_{l j k} \sigma_{i}-C_{i l k}^{h} \sigma_{j}-C^{h}{ }_{i j l} \sigma_{k} \\
& +\left(C_{a j k} g_{i l}+C_{i a k}^{h} g_{j l}+C_{i j a}^{h} g_{k l}\right) \sigma^{a}=0 .
\end{aligned}
$$

Contracting for h and l, we find
(3. 7)

$$
(n-1) C_{i a j k} \sigma_{a}-\left(C_{a i j k}+C_{j i a k}+C_{k i j a}\right) \sigma^{a}+C_{i k} \sigma_{j}-C_{i j} \sigma_{k}=0
$$

where
(3. 8)

$$
C_{i a j k}=g_{i h} C_{a j k}^{h}
$$

From (2.14) and (3.8), we find
(3. 9)

$$
C_{i a j k}+C_{j i a k}+C_{k i j a}=C_{i a j k}+C_{i j k a}+C_{i k a j}=0
$$

Thus, (3.7) can be written

$$
\begin{equation*}
C_{i j k}^{a} \sigma_{a}=\frac{1}{n-1}\left(C_{i j} \sigma_{k}-C_{i k} \sigma_{j}\right) \tag{3.10}
\end{equation*}
$$

Transvecting this equation with σ^{i} and taking account of (2.15), we get

$$
\begin{equation*}
C_{i j k}^{a} \sigma_{a} \sigma^{i}=0 \tag{3.11}
\end{equation*}
$$

Multiplying (3.6) by σ_{h} and using of (3.10) and (3.11), we get

$$
\begin{equation*}
\left[C_{i j k}^{h}-\frac{1}{n-1}\left(C_{i j} \delta_{k}^{h}-C_{i k} \delta_{j}^{h}\right)\right] \sigma_{a} \sigma^{a}=0 \tag{3.12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
W_{i j k}^{h} \sigma_{a} \sigma^{a}=0 \tag{3.13}
\end{equation*}
$$

and this means that either $\sigma_{a}=0$, i. e. the transformatiom under consideration is homothetic, or $W_{i j k}^{h}=0$ for $n>2$.

Conversely, if $\sigma_{a}=0$, then from (2.2) and (2.3), we have

$$
\overline{\{\bar{i}\}}\}=\left\{\begin{array}{l}
h \tag{3.14}\\
i j
\end{array}\right\}
$$

$R_{i j k}{ }_{i j}=R_{i j k}{ }_{i j}$
Differentiating (3.15) covariantly and taking account of (3.14) and (3.15), we get
(3.16) $\quad \bar{R}_{i j k / l}^{h}=R_{i j k, l}^{h}$,

If V_{n} is a recurrent Riemannian space, then from (1.1), we get

$$
\begin{equation*}
\bar{R}_{i j k / l}^{h}=R_{i j k, l}^{h}=R_{i j k}^{h}{ }_{i j l}=\bar{R}_{i j k}^{h} v_{l}, \tag{3.17}
\end{equation*}
$$

which shows that V_{n} is a also recurrent Riemannian space.
Next, we suppose that the space V_{n} be a conformal Euclidean, i. e. $W^{h}{ }_{i j k}=0$. Since the conformal curvature tensor is invariant under a conformal transformation, we find that $W_{i j k}^{h}=0$.

Thus we have
THEOREM 2. A necessary and sufficient condition that a recurrent Riemannian space be transformed into a recurrent Riemannian space by a conharmonic transformation is that either the space is a conformal Euclidean or the transformation is a homothetic.

Next, in a compact Riemannian space; the homothetic transformation is always an isometric. Thus we have

THEOREM 3. A necessay and sufficient condition that the compact recurrent Riemannian space be transformed into a compact recurrent one by a conharmonic transformation is that the transformation is an isometic.

Now, differentiating (3.5) covariantly, we get

$$
v_{l / m}=v_{l, m}-2 \sigma_{l, m}-v_{m} \sigma_{l}-v_{l} \sigma_{m}+g_{l m} \sigma^{a} v_{a}+2\left(2 \sigma_{l} \sigma_{m}-g_{l m} \sigma_{a} \sigma^{a}\right)
$$

Transvecting this equation with $\bar{g}^{l m}$ and using of (2.6), we get

$$
\begin{equation*}
v_{p}^{p}=e^{-2 \sigma}\left[v_{, p}^{p}+(n-2)\left(v_{p} \sigma^{p}-\sigma_{p} \sigma^{p}\right)\right] . \tag{3.18}
\end{equation*}
$$

From (3.5), we obtain

$$
\begin{equation*}
v_{p} v^{p}=e^{-2 \sigma}\left(v_{p} v^{p}-4 v_{p} \sigma^{p}+4 \sigma_{p} \sigma^{p}\right) . \tag{3.19}
\end{equation*}
$$

In a recurrent Riemannian space, if we put

$$
\begin{equation*}
v_{p}^{p}=v^{p}, p+\frac{n-2}{4} v_{p} v^{p} \tag{3.20}
\end{equation*}
$$

then, from (3.18) and (3.19), we find

$$
\begin{equation*}
\nabla_{p}^{p}=e^{-2 \sigma} v^{p}{ }_{p} . \tag{3.21}
\end{equation*}
$$

Transvecting this equation with $g_{i j}$. we have

$$
\begin{equation*}
\bar{g}_{i j} \bar{v}^{p}{ }_{p}=g_{i j} v^{p}{ }_{p .} . \tag{3.22}
\end{equation*}
$$

Thus we have
THEOREM 4. In a recurrent Riemannian space, $g_{i j} j^{p}$ is invariant under a conharmonic transformation.

§ 4. Ricci-recurrent Riemannian spaces.

Let V_{n} be a Ricci-recurrent Riemannian space, that is,
(4. 1) $\quad R_{i j, l}=v_{l} R_{i j}$,
where $R_{i j}$ is a Ricci tensor and v_{l} is a gradiant.
We suppose that V_{n} be transformed into ∇_{n} by a conharmonic transformation and \bar{V} be also a Ricci recurrent Riemannian space, then

$$
\text { (4. 2) } \quad \bar{R}_{i j / l}=v_{l} \bar{R}_{i j}
$$

Under a conharmonic transformation, The Ricci tensor $R_{i j}$ will be transformed into
(4. 3) $\quad \bar{R}_{i j}=R_{i j}+(n-2) \sigma_{i j}$.

Differentiating (4.3) covariantly and using of (4.1). (4.2) and (3.6), we have
(4. 4)

$$
\begin{aligned}
& (n-2)\left(\sigma_{i j, l}-\sigma_{i j} v_{l l}\right)-\left(R_{l j} \sigma_{i}+R_{i l} \sigma_{j}-R_{a i} \sigma^{a} g_{j l}-R_{j a} \sigma^{a} g_{i l}\right) \\
& \quad=(n-2)\left(\sigma_{l j} \sigma_{i}+\sigma_{l i} \sigma_{j}-\sigma_{a i} \sigma^{a} g_{j l}-\sigma_{j a} \sigma^{a} g_{i l}\right)
\end{aligned}
$$

Multiplying (4.4) by σ^{l} and summing over l, we get
(4. 5) $\quad\left(\sigma_{i j, l}-\sigma_{i j} v_{l}\right) \sigma^{l}=0$.

Thus we have
THEOREM 5. In a Ricci-recurrent Riemannian space, The conharmonic transformation satisfies (4.5)

Next, we suppose that V_{n} be a Ricci-symmetric Riemannian space, that is,
(4. 6) $\quad R_{i j, l}=0$,
and, from (3.6), we have $\sigma_{l}=0$. Hence we have
THEOREM 6. A necessary and sufficient condition that a Ricci-symmetric space be transformed into a Ricci-symmetric space is that the conhamonic transformation is a homothetic.

By the theorem of Hopf-Bochner, the homothetic transformation in a compact Riemannian space is always an isometric [5]. Thus we have

THEOREM 7. A necessary and sufficient condition that a compact Ricci symmetric space be transformed into a compact Ricci symmetric space is that the conharmonic transformation is an isometric.

§5. Einstein spaces.

We suppose that V_{n} and V_{n} be Einstien spaces with non-zero curvature scalar, that is,
(5. 1) $\quad R_{i j}=\frac{R}{n} g_{i j}$,
(5. 2) $\quad \bar{R}_{i j}=\frac{\bar{R}}{n} \bar{g}_{i j}$.

From (2.10), we have

$$
\text { (5. 3) } \quad \bar{R}_{i j}=R_{i j}
$$

which shows that the Ricci tensor is preserved by a conharmonic. From (2.7), we get
(5. 4)

$$
\sigma_{i j}=0
$$

$$
(n>2)
$$

Thus we have
THEOREM 8. In a Einstein space with non-zero curvature scalar, the conharmonic transformation satisfies (5.4).

Next, if, in the Einstein space with non-zero constant curvature, then we have
(5. 5) $\quad R_{i j, l}=0$,
which shows that an Einstein space with non- zero constant curvature is a Ricci symmetric Riemannian space.

Let V_{n} be an also Einstein space with non-zero constant curvature, then we obtain
(5. 6) $\quad \bar{R}_{i j / l}=0$.

It follows from (5.5) and (5.6) that $v_{l}=v_{l}=0$. By virture of (3.5), we get $\sigma_{l}=0$, i. e. a conharmonic transformation is a homothetic. If, in an Einstein space with non-zero constant curvature, the transformation is a homothetic, then a homothetic transformation is an isometric [5]. Thus we have

THEOREM 9. In an Einstein space with non-zero constant curvature, a conharmonic transformation is an isometric.

Taegu Teacher's College. July. 1963
Teagu, Korea.

REFERENCES

[1] Y. Ishii, On conharmonic transformations, Tensor, New Series, 7(1957).
[2] T. Sumitomo, Projective and conformal transformations in compact Riemannian spaces, Tensos, New Series, 9(1956).
[3] M. Prvanovitch, Projective and conformal transformation in recurrent and Riccirecurrent spaces. Tensor, New Series, 12 (1962).
[4] S. Ishihara, Groups of projective and conformal transformations, Jap. Jour. of Math. 9(1959).
[5] K. Yano, On honothetic mappings of Riemannian space, Prece. of the Ame. . Math. 2(1961).
[6] K. Tano and S. Bochner, Curvature and Betti number, Princeton, 1949.
[7] E.P. Eisenhart, Continuous groups of transformations, Princeton, 1933.

