A REMARK ON NEWMAN ALGEBRAS

By F. M. Sioson

In several papers [3], [4], [5], the author has exhibited a number of independent axiom-systems for Newman and Boolean algebras that consist purely of natural identities or equational laws. As such, they have been called equational bases.

For any equation E involving possibly the binary operations $\cdot,+$ and the unary operation - , denote by $E^{+}(E \cdot)$ the equation obtained by commuting all additions (multiplications) occurring in E. Similarly, let E be the equation resulting from E through an interchange of their multiplications and additions. For instance, if E is $x+y \bar{y}=x$, then E^{+}is $y \bar{y}+x=x$ and \bar{E} is $x(y+\bar{y})=x$. It is easily verified that the equational transformations $\cdot,+$, and - generate an abelian group G_{8} with eight elements which contain the four group G_{4} generated by \cdot and + . It was also shown in [5] that if $P_{1}, P_{2}, \cdots, P_{n}$ is any independent axiom-system of Newman (respectively Boolean) algebras, then $P_{1}^{t}, P_{2}^{t}, \ldots, P_{n}^{t}$ is also an independent axiom-system of Newman (Boolean) algebras for each $t \theta G_{4}\left(t \theta G_{8}\right)$.

Using the results of these previous communications, we can obtain the following sharper conclusion:

THEOREM. The only equational bases of Newman algebras out of the following pool of twelve equations:

$$
N_{1}: x(y+z)=x y+x z ;
$$

$$
N_{2}: x(y+\bar{y})=x ; \quad \bar{N}_{2}: x+y \bar{y}=x ;
$$

$$
\begin{aligned}
& N_{\dot{2}}:(y+\bar{y}) x=x ; \\
& \bar{N}_{2}^{+}: y \bar{y}+x=x:
\end{aligned}
$$

$$
N_{3}: x y=y x: \quad \bar{N}_{3}: x+y=y+x ;
$$

$$
\begin{aligned}
& N_{4}: x(y \bar{y})=y \bar{y} ; \\
& N_{4}^{\prime}:(y \bar{y}) x=y \bar{y} ; \\
& N_{5}: x x=x ; \\
& N_{6}: \bar{x}=x: \\
& N_{7}: x+(y+z)=(x+y)+z:
\end{aligned}
$$

(I_{1})

(I_{2})
($I I_{1}$)

($I I_{2}$)

(II_{3})

($I V_{1}$)

(II_{4})
and their transforms under the members of the group G_{4}. If to each of these equa-tion-systems the equation $\bar{N}_{5}: x+x=x$ is added and any member t of G_{8} is applied, then an equational basis of Boolean algebras arise.

Proof. The fact that $I_{1}, I I_{1}$ are equational bases of Newman algebras has been demonstrated in article [5], while equation-system $I V_{1}$ has been shown to be a Newman equational basis in [4]. With the presence of the commutative law N_{3}, it is clear that I_{1} and $I_{2}, I I_{1}, I I_{2}, I I_{3}$, and $I I_{4}, I V_{1}$ and $I V_{2}$ are equivalent axiom-systems. In [6], Yuki Wooyenaka also showed that the system

is an equational basis of Newman algebras. Under the presence of the commu tative laws N_{3} and \bar{N}_{3}, then $I I I_{1}$ and $I I I_{2}$ are each equivalent to the above Wooyenaka's basis. Thus to show that each of the systems $I_{2}, I I_{2}, I I_{3}, I I_{4}$, $I I I_{1}, I I I_{2}$, and $I V_{2}$ forms an equational basis of Newman algebras, it will suffice to show their independence.

The independence of the system I_{2} is shown by the following models:

| | $0+0$ | $0+1$ | $1+0$ | $1+1$ | $0 \cdot 0$ | $0 \cdot 1$ | $1 \cdot 0$ | $1 \cdot 1$ | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{2} N_{1}$ | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| $I_{2} N_{2}^{\cdot}$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| $I_{2} \bar{N}_{2}$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| $I_{2} N_{3}$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Note that for $I_{2} N_{1}: 1(1+0) \neq 11+10:$ for $I_{2} N_{2}^{*}:(0+0) 1 \neq 1:$ for $I_{2} \bar{N}_{2}: 0+11$ $\neq 0$; and for $I_{2} N_{3}: 10 \neq 01$.

The independence-models $I I_{2} N_{2}^{*}$ and $I I_{2} N_{3}$ necessary to prove the independence of N_{2}^{*} and N_{3} from the rest of $I I_{2}$ are the same as those of $I_{2} N_{2}^{*}$ and $I_{2} N_{8}$ respectively. $I I_{2} N_{1}$ is given by

+	0	1	a
0	0	1	1
1	1	1	1
a	1	1	a

\cdot	0	1	a
0	0	0	0
1	0	1	a
a	0	a	0

y	\bar{y}
0	1
1	0
a	0

and $I I_{2} N_{4}$ by

\cdot	0	1
0	0	1
1	1	1

y	\bar{y}
0	0
1	0

Here observe that $a(a+1) \neq a a+a 1$ in the first model and $1(00) \neq 00$ in the se cond model.

The independence-models $I I_{3} N_{1}, I I_{3} N_{2}, I I_{3} N_{4}{ }^{\prime}$ are exactly the same as $I I_{2} N_{1}$, $I_{2} N_{2}^{*}, I I_{2} N_{4}$ respectively. The remaining required model $I I_{3} N_{3}$ is given by the following:

+	0	1	a	b
0	0	1	a	b
1	1	1	1	1
a	a	1	1	1
b	b	1	1	1

F. M. Sioson

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	a	0
b	0	b	0	b

y	\bar{y}
0	1
1	0
a	h
b	a

In this previous case, we have $b 1 \neq 1 b$ (see [3]).
For $I I_{4}$, the independence-models are precisely the same as those of $I I_{3}$ with the exception of $I I_{4} N_{3}$ which is given by the following model used in [3]:

+	0	1	a	b	c	d
0	0	1	a	b	c	d
1	1	1	1	1	1	1
a	a	1	a	1	1	a
b	b	1	1	b	b	1
c	c	1	1	c	c	1
d	d	1	d	1	1	d

\cdot	0	1	a	b	c	d
0	0	0	0	0	0	0
1	0	1	a	b	c	d
a	0	a	a	0	0	a
b	0	b	0	b	b	0
c	0	c	0	c	c	0
d	0	d	d	0	0	d

y	0	1	a	b	c	d
\vec{y}	1	0	b	a	d	c

Note here that $a d \neq d a$. The verification of N_{1} is found in [3].
For $I I I_{1} N_{1}$ we take $I_{2} N_{1} . \quad I I I_{1} N_{2}$ we have

+	0	1
0	0	1
1	1	1

\cdot	0	1
0	0	0
0	0	0

y	\bar{y}
0	1
1	0

Note that $1(y+\bar{y}) \neq 1$. For $I I I_{1} \bar{N}_{2}^{+}$consider the collection of all finite unions of open finite, semi-infinite, and infinite intervals on the real line under the operations of taking unions (denoted by \cdot), intersections (denoted by +) and the
complement of the closure of a set (denoted by -). Then note that

$$
(2,4) \overline{(2,4)}+(1,3)=((2,4) \cup \overline{(2,4)}) \cap(1,3) \neq(1,3) .
$$

For $I I I_{1} N_{3}$ we take Y. Wooyenaka's model \bar{P} found on page 86 of her paper [6]. $I I I_{1} \bar{N}_{3}$ is given by the following model:

+	0	1
0	0	1
1	0	1

\cdot	0	1
0	0	1
1	1	1

y	\bar{y}
0	0
1	0

In this instance, we have $1+0 \neq 0+1$.
The same models used in proving the independence of $I I I_{1}$ may be used in proving the independence of $I I I_{2}$.

It remains to consider the independence of $I V_{2}$. For $I V_{2} N_{1}$ the model $I_{2} N_{1}$ suffices. $I V_{2} \bar{N}_{2}^{+}$may be taken as $I I I_{1} \bar{N}_{2}^{+}$, while $I V_{2} N_{2}^{+}$may be taken as its dual, that is to say, the same collection of finite unions of open finite, semiinfinite, and infinite real intervals under union (this time denoted by +), intersection (this time denoted by \cdot) and the complement of the closure of a set (denoted again by -). In this instance,

$$
((2,4)+\overline{(2,4)})(1,3)=((2,4) \cup \overline{(2,4)}) \cap(1,3) \neq(1,3) .
$$

For $I V_{2} N_{3}$ we again choose $I I_{4} N_{3}$. Finally, $I V_{2} N$ is given by the following independence-model:

Here $\overline{\overline{1}} \neq 1$.
After having shown that the above ten equation-systems are indeed equational bases of Newman algebras, we are now ready to prove that these are the only possible ones. It is easily seen by direct verification that the following model satisfies all the twelve equations enumerated above except N_{1} since $a(b+b) \neq a b+a b$.

+	0	1	a	b
0	0	1	a	b
1	1	1	1	1
a	a	1	a	1
b	b	1	1	b

1	0	I	a	b
0	0	0	0	0
1	0	1	0	1
a	0	a	a	0
b	0	b	0	b

y	\bar{y}
0	1
1	0
a	b
b	a

This means that N_{1} is independent of the rest of the dozen equations listed in the beginning.

By exactly the same type of argument, N_{3} is independent of the rest of the twelve equations by virtue of the model \bar{P} of Y. Wooyenaka (page 86, [6]) which we took for $I I I_{1} N_{3}$.

Thus, every equational basis of Newman algebras based on the pool of twelve equations given in the beginning must necessarily include N_{1} and N_{3}. On the other hand, any such basis cannot contain both N_{2} and N_{2}, for then it will be a dependent system. Without $N_{2}^{*}\left(N_{2}\right)$, equation $N_{2}\left(N_{2}^{*}\right)$ would then be independent of the rest of the remaining eleven equations. This is demonstrated by the model $I V_{2} N_{2}^{*}$.

This implies then that every equational basis of Newman algebra based on the given pool must contain all three N_{1}, N_{2} and N_{3} or N_{1}, N_{2}^{*}, N_{3}. The equational bases given above are examples of such bases. In order to seek other possible equational bases for Newman algebras, the equations \bar{N}_{2}, N_{4}, and N_{4}^{\prime} should be excluded from our modified pool, thus reducing the original set of twelve to either one of the following:

Since each of these properly contains an equational basis of Newman algebras, there cannot then be a Newman equational basis out of the original twelve with eight axioms or equations. The possible equational bases with seven equations must also exclude \bar{N}_{2}^{+}or \bar{N}_{3} (since $I I_{1}-I I I_{2}$ and $I V_{1}-I V_{2}$ are already known to be equational bases). The following are then the only possible candidates for Newman equational bases with seven axioms:

The third and fourth systems contains respectively $I V_{1}$ and $I V_{2}$ and hence are dependent, while the first and second are incomplete, since \bar{N}_{2} is independent of them. This is shown by the model $I I I_{1} \bar{N}_{2}^{+}$used in the proving the independence of \bar{N}_{2}^{+}from the rest of system $I I I_{1}$.

From the third and fourth systems, the equation-systems with six axioms that may possibly be bases are

The last two of these systems are incomplete being subsets of incornplete systems of equations for Newman algebras. The first two are also incomplete, since \vec{N}_{3} or N_{6} cannot be derived from them. The independence of \bar{N}_{3} or N_{6} is effected by model $I V_{2} N_{6}$.

From [2], it is implicit that our original pool of 12 equations N_{1}, N_{2}, N_{2}^{*}, $\bar{N}_{2}, \bar{N}_{2}^{+}, N_{3}, \bar{N}_{3}, N_{4}, N_{4}^{\prime}, N_{6}, N_{6}$, and \bar{N}_{7} hold in any Newman algebra. Moreover, any Newman algebra satisfying the equation $\bar{N}_{5}: x+x=x$ is a Boolean algebra. To show this, it is sufficient to derive $N_{1}: x+y z=(x+y)(x+z)$ from
the axioms of Newman algebra with \bar{N}_{5} adjoined and hence derivet the equational basis

of Boolean algebras (see [3]). This is easily effected as follows:
(a) $x+x y=x$.

$$
\begin{aligned}
& x=x(y+\bar{y})=x y+x \bar{y}=(x y+x y)+x \bar{y}=x y+(x y+x \bar{y})=x y+x(y+\bar{y}) \\
& =x y+x=x+x y \quad\left(N_{2}, N_{1}, \bar{N}_{5}, \bar{N}_{7}, N_{1}, N_{2}, \bar{N}_{3}\right) .
\end{aligned}
$$

(b) $x+y z=(x+y)(x+z)$.

$$
\begin{aligned}
& (x+y)(x+z)=(x+y) x+(x+y) z=x(x+y)+z(x+y) \\
& =(x x+x y)+(z x+z y)=(x+x y)+(x z+y z)=x+(x z+y z)=(x+x z)+y z \\
& =x+y z \quad\left(N_{1}, N_{3}-N_{3}, N_{1}-N_{1}, N_{5}-N_{3}-N_{3}, \text { (a) }, \bar{N}_{7}, \text { (a) }\right) .
\end{aligned}
$$

The independence of each of the equation-systems $I_{1}, I_{2}, I I_{1}, I I_{2}, I I_{3}, I I_{4}$, $I I I_{1}, I I I_{2}, I V_{1}, I V_{2}$ with N_{5} adjoined follows from the observation that each of the models used in proving the independence of $I_{1}, \quad I_{2}, I I_{1}, I I_{2}, I I_{3}, I I_{4}$, $I I I_{1}, I I I_{2}, I V_{1}, I V_{2}$ all satisfy the equation $\bar{N}_{5}: x+x=x$ and that the equation \bar{N}_{5} itself in independent of Newman algebras as shown by the following example of a two element Newman algebra:

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

y	\bar{y}
0	1
1	0

Here $1+1 \neq 1$.

Department of Mathematics
University of Florida
Gainesville, Florida
[1] Birkhoff, G. : Lattice Theory, New York: American Mathematical Society, 1948 (pp. 155ff).
[2] Newman, M. H. A. ; A characterization of Booléanalgebras and rings, Journal of the London Mathematical Society, 16 (1941) 256-272.
[3] Sioson, F.M.: Equational bases of Boolean algebras, Journal of Symbolic Logic, 29 (1964) 115-124.
[4] Sioson, F. M. ; On Newman algebras I and II, Proceedings of the Japan Academy, 41 (1965) 31-39.
[5] Sioson, F.M. : Natural equational bases for Newman and Boolean algebras, to appear in the Compositio Mathematica (Abstract, Journal of Symbolic Logic, 30 (1965).)
[6] Wooyenaka, Yuki; On postulate sets for Newman and Boolean algebras I and II, Proceedings of the Japan Academy, 40 (1964) 76-87.

