COMPLEMENT OF A CONGRUENCE RELATION IN A MODULAR LATTICE

By Tae Ho Choe

A congruence relation in a lattice is a binary relation satisfying reflexivity, symmetry, transitivity and substitution.

Let Φ be the lattice of congruence relations of a modular lattice. In this paper, we shall consider a necessary and sufficient conditions in order that a congruence relation has its complemented element in Φ.

Let L be a lattice. The set N of quotients of L is called quotient ideal if and only if N satisfies the followings,
(i) For any $a \in L,[a, a] \in N$,
(ii) For any $[a, b] \in N,[x, y]<[a, b]$ implies $[x, y] \in N$,
(iii) If $[a, b] \in N$ and $[a, b],[x, y]$ are projective then $[x, y] \in N$, and
(iv) $[a, b],[b, c] \in N$ implies $[a, c] \in N$.

For any congruence relation θ, a quotient $[a, b]$ is called nullized by θ if a $\equiv b(\theta)$.

Mayeda [2] has proved that given a congruence relation θ on a lattice, let $N(\theta)$ be the set of all quotients nullized by θ, then $N(\theta)$ is a quotient ideal, and conversely given any quotient ideal N, a congruence relation $\theta(N)$ is defined by writing $a \equiv b(\theta(N))$ if and only if $[a \cap b, a \cup b] \in N$. It follows clearly that $N(\theta(N))=N$ and $N(\theta)<N(\phi)$ if and only if $\theta<\phi$ in Φ.

Let L be a lattice. L is said to be alternate for θ if, for each proper quotient $[a, b]$, there exists a finite chain $a=x_{0}<x_{1}<\cdots \cdots<x_{n}=b$ such that $x_{i-1} \equiv x_{i}(\theta)$ and $u \not \equiv v(\theta)$ for any distinct elements $u, v \in\left[x_{i}, x_{i+1}\right]$ alternatively.

The following lemma will be needed.

LEMMA. Let L be a lattice and θ, ϕ two congruence relations on $L . x \equiv y(\theta \cup \phi)$ if and only if there exists a finite chain $x \cap y=a_{0}<a_{1}<\cdots \cdots<a_{n}=x \cup y$ such that a_{i} $\equiv a_{i+1}(\theta$ or $\phi)$.

PROOF. The sufficiency is trivial, we shall prove the necessity. Suppose x $\equiv y(\theta \cup \phi)$. Then clearly $x \cap y \equiv x \cup y(\theta \cup \phi)$, i. e., we can find a finite sequence $x \cap y=b_{0}, b_{1}, \cdots \cdots, b_{n}=x \cup y$ such that $b_{i} \equiv b_{i+1}(\theta$ or $\phi)$. Setting $x_{i}=\left[(x \cap y) \cup b_{i}\right]$

Tae Ho Choe

$\cap[x \cup y] \quad(i=0, \quad i, \cdots, n), \quad$ clearly $\quad b_{i} \equiv b_{i^{+1}}(\theta),(\phi)$ implies $x_{i} \equiv x_{i+1}(\theta),(\phi)$, respectively. And we see $x \cap y=x_{0}<x_{1}$. But since $x_{1} \equiv x \cup y(\theta \cup \phi)$ and $x_{1} \leq x \cup y$, taking x_{1} instead of $x \cap y$ in $x \cap y \equiv x \cup y(\theta \cup \phi)$ we can repeat the above process.

Now we prove the main theorem.

THEOREM. Let L be a modular lattice and θ a congruence relation on $L . \theta$ has its complement θ^{\prime} if and only if L is alternating for θ.

PROOF. We first prove the sufficiency. Let N^{\prime} be the set of all quotients $[a, b]$ such that either $a=b$ or $[c, d] \notin N(\theta)$ for any $[c, d] \leq[a, b]$. Then N^{*} is a quotient ideal. In fact, (i) and (ii) conditions are trivial. For (iii), suppose $[a, b] \in N^{\prime}$ and $[a, b],[x, y]$ are transpose. If $[x, y] \notin N^{\prime}$, then we can find a proper quotient $[u, v] \in N(\theta)$ such that $[u, v]<[x, y]$. Since $[a, b],[x, y]$ are transpose, we have either $a \cap y=x$ and $a \cup y=b$ or $x \cap b=a$ and $x \cup b=y$. Say $a \cap y=x$ and $a \cup y=b$. By modularity [$u, v],[u \cup a, v \cup a]$ are transpose. It follows $[u \cup a, v \cup a] \in N(\theta)$. But $[u \cup a, v \cup a] \leq[a, b]$ and $[a, b] \in N^{\prime}$ which is contrary. Hence $[x, y] \in N^{\prime}$. For (iv), suppose $[a, b],[b, c] \in N^{\prime}$. If $[a, c] \in N^{\prime}$ then we can also find a proper quotient $[u, v] \in N(\theta)$ such that $[u, v] \leq[a, c]$. Setting $w=v \cap$ (ưb) we have $[w, v] \leq[u, v]$ which follows $[w, v] \in N(\theta)$. It is easily seen that $[w, v],[u \cup b, v \cup b]$ are transpose. Therefore $[u \cup b, v \cup b] \in N(\theta)$. But $[u \cup b, v \cup b]$ $\leq[b, c]$ and $[b, c] \in N^{\prime}$ which is contrary. Hence $[a, c] \in \mathrm{N}^{\prime}$.
From this quotient ideal N^{\prime} of L, we can have the congruence relation $\theta\left(N^{\prime}\right)$ on L. Now we see $\theta\left(N^{\prime}\right)$ is a complement of θ. In fact, for $x \neq y$ in L if $x \equiv$ $y(\theta)$ then $[x \cap y, x \cup y] \in N$, i.e., $[x \cap y, x \cup y] \notin N^{\prime}$. Therefore $x \not \equiv y\left(\theta\left(N^{\prime}\right)\right)$. Hence $\theta \cap \theta\left(N^{\prime}\right)=0$. Since L is alternating, for any two distinct elements $x, y \in L$ there exists a finite chain $x \cap y=a_{0}<a_{1}<\cdots \cdots<a_{n}=x \cup y$ such that $a_{i-1} \equiv a_{i}(\theta)$ and $u \not \equiv v(\theta)$ for any distinct elements $u, v \in\left[a_{i}, a_{i+!}\right]$ alternatively. It easily follows that $x \cap y \equiv x \cup y\left(\theta \cup \theta\left(N^{\prime}\right)\right)$. Hence $\theta \cup \theta\left(N^{\prime}\right)=I$.

Now we prove the necessity. Suppose there exists a complement θ^{\prime} of θ. For each proper quotient $[a, b] a \equiv b\left(\theta \cup \theta^{\prime}\right)$. By lemma, there exists a finite chain $a=a_{0}<a_{1}<\cdots \cdots<a_{n}=b$ such that $a_{i} \equiv a_{i+1}\left(\theta\right.$ or $\left.\theta^{\prime}\right)$. By cancellation of repeating terms we can choose that $a=x_{0}<x_{1}<\cdots \cdots x_{n}=b$ so that $x_{i-1} \equiv x_{i}(\theta)$ and $x_{i} \equiv x_{i+1}$ (θ^{\prime}) alternatively. And for any distinct elements $u, v \in\left[x_{i}, x_{i+1}\right]$ we can easily see that $u \not \equiv v(\theta)$. Hence L is alternating for θ.

COROLLARY. Let L be a modular lattice, Φ is a Boolean algebra if and only if L is alternating for any $\theta \in \Phi$.

COROLLARY. If L is a modular lattice in which any bounded chain is finite, then Φ is a Boolean alezebra.

Sept. 1963
Mathematical Department
Kyungpook University
Taegu, Korea.

REFERENCES

[1] G. Birkhoff; Lattice theory, rev. ed., A.M.S. (1948).
[2] F. Maeda; Kontinuierliche Geometrien, Grundlehren der Math. Wiss., Band XCV, (1958).

