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A nonned linear space is a linear space N in

which. to each vector x, there corresponds a real

number, denoted by 1/ x 11 and called the norm

of x, satisfying the following properties:

(l) 11 x 1/ ;;;;"0, and 1/ x 11 =0 if and only if x=O;

(2) 1/ x+y 11 .s 11 x 11 + 11 y 11 ;

(3) 11 ax 1/ =! a III x 11 .
The Donned linear space N is a metric space

with respect to the metric d defined by d(x.y)

= 11 x-y 11. A Banach space is a complete normed

linear space.

Theorem L Let B (X, Y) be the set of all bou

nded linear operators of a nonned space X into

a normed space Y. Then BCX, Y) is complete if

Y is complete. where BCX, Y) is the set of all
bounded linear operators of X in Y.

Example 1. Let B(X) be the set of all bounded

linear operators of a normed linear space X into

itself. For A, B f B(X), (AB)x=ACBx). Then

IfABxlI I/AI/I/Bxll IIAl/lIBllllxll
IIxll L IIxll ~ Ilxll

= IIAII·IIBII.

Hence IIABIl::£IIAII-IIBII.
BCX) is a nonned space, and algebraically it

is an algebra with the property 11 All· 11 B fI ;;;;"

IIABII.
Let A be a linear associative algebra with

either the real or complex numbers as its field

K of scalars. The algebra is called a nonned

algebra provided it is a nonned space, satisfying

the multiplicative inequality 11 xy 11 .s " xII· 11 y 11 •

If it is a Banach space, it is called a Banach

algebra.

If a Banach algebra A has an identity Co then

11 e 11 = 11 ee 11 .s 11 e IJ • 11 e I! ,so that 11 e 11 ~l.

NeverthIess we may be able to renorm 11 e 11 = 1.

Example 2. By theorem I, it is evident that

B(X) is a Banach algebra provided that X is a

Banach space.

Example 3. One of the most important Banach

algebras, denoted by C(X), consist of all bounded

continuous co:nplex-valued functio:1s defined on a

topological space X

Example 4. The sequences of complex numbers
- 00

a= {a.) with 11 a B=Ei a.1<00 and with multipli-
• -00 00

cation a*b defined by (a*b).= E a._mb... is ano-
m=-oo

ther Banach algebra.

Theorem 2. Every Banach division algebra i~

!somorphic to its scalar field

Theorem 3. Let A be a commutative Banach

algebra with multiplicative identity. Then any

maximal ideal I'v1, A/M is a division algebra.

Accordingly, it is isomorphic to the scalar field

I. Involutions in Banach algebras
A Banaclt algebra A is called a Banach *-al

gebra if it has an involution. that is, if there

exists a mapping x~x* of A into itself with the

following properties:

(1) (x+y)*=x*+y*

(2) (ax)*=ax*

(3) (xy)*=y*x*

(4) (x*)*=x.

It is an easy consequence of (4) that the invo

lution x-.+x* is actually a bijection of A onto

itself. Furthermore, if (5) If x* x 11 = 11 x 11 3 is

satisfied in a Banach *-algebra. it is called A
B*-algebra.

Example 5. Let M be a maximal ideal of A

with an identity. Then AIM is isomorphic to K

If K is a complex field. AIM is easily checked

to be a B*-algebra. Let xCM) be the mapping:
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i(M)=x(M)=x+M. Then x(M) is a mapping

Qf M into K where M is the set of all maximal

ideals in A. If we put the a-projective topology

on M. M is called a maximal ideal space, where

a= {x: xEA}. The mapping x-+x. of couse. we

have identified x+M with some scalar in K under

the isomorphism. is called a Gelfand mapping.

Then we have the following "Gelfand-Naimark

Theorem":

Theorem 4. If A is a commutative B*-algebra.

then the Gelfand mapping x-+x is an isometric

*-iso:110rphism of A onto the commutative B*

algebra C(M). the set of all bounded continuous

complex-valued functions on M.

If we apply this theorem to C(X). where X is

a compact Hausdorff space. we have the following

Banach-Stone theorem:

Theorem 5. Two compact Hausdorff spaces X

and Y arc homeomorphic if and only if their

corresponding function algebras C(X). and C(Y)

are isomorphic.

Historically speaking, a B*-algebra has OTlgi

nally been called a C*-algebra by Gelfand and

Naimark. adding the foHowing axiom: "I + x*x

has an :averse". Later in the commutative case.

Gelfand and Naimark proved in a rather intricate

way that the last axiom is redundant. We note

that 11 x 11 = 1I x* Il is easily proved in the com

mutative case. A neat proof by Fukamiya is now

available.

A commutative B*-algebra is simply the alge

hra of all continuous functions on a compact

Hausdorff space with the *-operation complex

conjugation (under isometric imbedding).

After a decade of mystery the noncommutative

case of Gelfand and Naimak's query received its

answer: the axiom "1 +x*x has an inverse" can

be omitted in the noncommutative case as well.

The key lemma was discovered independently and

nearly simultaneously by Fukamiya. and Kelley

and Vaught. The Kelley-Vaught version is extre

mely brief and elegant and can be reproduced
here. One has to show that. if x and y are posi

tive elements in a B*-algebra, the same is true

of x+y. Write 11 x 11 =a. 11 y 11 =13· Then 11 a
-x 11 £.a. I1I3-y 11 £.13. whence 11 (a+I3)-(x+

y) 11 £.a+{3.

2. Derivations

Two apparently unrelated results stimulated

some recent research on derivations in Banach

algebras.

In quantum mechanics one encounters unfoun

ded operators satisfying AB-BA=I. Can thlf>

equation be satisfied with bounded operators?

Wielandt proved that the answer is "No". Silov

proved the following theorem. Let A be a Banach

algebra of continuous functions on the unit inte

rval. Suppose that A contains all n-fold differe

ntiable functions. Then for some n. A contains

all n-fold differentiable functions. We are at the

moment concerned with the corollary that the

algebra of all infinitely differentiable functions

cannot be normed to form a Banach algebra.

The conjecture based on these. two results is

the following: if x.y are elements in a Banach

algebra such that xy-yx commutes with x, then
xy-yx is a generalized nilpotent. In the finite·

dimensional case this is a well-known theorem of

Jacobson. After a variety of partial results had

been obtained. Kleinicke proved the conjecture.

We introduce the inner derivation a-+a' =ax-xa.

Our hypothesis states that y" =0. A simple in

duction based on Leibnitz's formula shows that

(y"Y") =n! (y')". If we write K for the norm

of the bounded operator a-+a'. we then have

11 (y')" 11 £.K" 11 Y 11 "/nL It follows that y' is a

generalized nilpotent element. From this result it

is easy to proceed to the following theorem: Any

continuous derivation of a commutative Banc,,:h

algebra maps it onto its radical

3. W*-algehra

We digress from the principal topic of W*-al

gebra to quote an example of a B*-algebra. We

have already observed that the bounded linear

operators of a B:mach space into itself form a

Banach algebra. In a Hilbert space H this normcd

algebra B(R) admits another important operation.

the adjoint: that is. (Tx,y)=(x.T*y), because

27-



of "Riesz Representation Theorem" and definition

of adjoint operators. Then the involution operation

T ~T* has the following properties:

(l) T**=T

(2) (S+T)*=S*+T*

(3) OT)*=AT*

(4) (ST)*=T*S*

(5) 11 T*T 11 = 11 T I! 2

(6) (1+T*T) E BeH). where I is the identity

operator. Thus B(H) is a B*-algebra.

The typical neighborhood of 0 for the weak

topology on B(H) is obtained by specifying a

I:03itive e. a finite set of elements Xi, Yi in R
and taking all TfB(H) with i(Tx;, Y.)I<e.

A W*-aIgebra is a weakly closed B*-aIgebra.

Murray and Von Neumann made immense progress

in the study of W*-algebras. An excellent sum

mary of the work of Murray and Von Neumann

is given by Naimark. The W*-algebra plays a

vital role in studying group representations. espe

cially infinite-dimensional representations.

4. Group algebras.

Let (X.S.,u) be a measure space. If p~l, we

shall denote by Lp(X) the class of all measurable

functions f for which I f ,P is integrable with norm

11 f 11 p=(SI f jPd,u) lIP.

Lp(X) is a Banach space. Let G be a locally

compact group. In every locally compact group G

there exists at least one regular Haar measure.

L'(G) becomes a Banach algebra with multip

lication (f*g) (x)=Sf(xy)g (y-l)d,u(y)=Sf(y)g
G G

(y-1x)d,u(y), which is called the convolution.

Theorem 6: LI(G) is commutative if and only

if G is commutative.

Theorem 7: LI(G) has an identity if and only

if G is discrete. This LI(G) is the algebra to

which the expression "group algebra" is usually

applied. The theory of commutative group algebras

has been extremely well developed with the help

of character groups. The tre.atise of Loomis in

"Introduction to abstract harmonic analysis" gives

a self-contained treatment of the algebra L'(G)

for abelian G and the elementary theory for non-

abelian G. Naimark's "Normed rings" and Hewitt

and Ross's "Abstract Harmonic analysis I" contain

a complete discussion of Banach algebra, including

recent developmentS, as well as a text book

treatment of those parts of functional analysis

relevant to the theory of Banach algebra.
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